Performance of differential modulation under rf impairments

Bassant Selim, Paschalis C. Sofotasios, Sami Muhaidat, George K. Karagiannidis, Bayan Sharif

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations


Coherent detection requires exact knowledge of the channel state information, which is often a challenging task in demanding practical applications. Based on this, non-coherent detection of differentially modulated signals can be considered as an alternative method. The present paper investigates the effects of in-phase/quadrature-phase imbalance (IQI), which are known to degrade the performance of wireless communication systems. Specifically, we evaluate the effects of IQI on the bit error rate (BER) performance of differential quadrature phase shift keying (dQPSK) for ideal receiver (RX) with transmitter (TX) IQI, ideal TX with RX IQI and joint TX/RX IQI. Explicit analytic expressions are derived for the BER of both single-carrier and multi-carrier systems suffering from IQI at the TX and/or RX. Extensive Monte-Carlo simulation as well as offered analytic results show that realistic TX/RX IQI values can degrade the corresponding BER by over 30%. Likewise, it is shown that the detrimental effects of IQI are more considerable on DQPSK than on QPSK.

Original languageBritish English
Title of host publication2017 IEEE International Conference on Communications, ICC 2017
EditorsMerouane Debbah, David Gesbert, Abdelhamid Mellouk
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781467389990
StatePublished - 28 Jul 2017
Event2017 IEEE International Conference on Communications, ICC 2017 - Paris, France
Duration: 21 May 201725 May 2017

Publication series

NameIEEE International Conference on Communications
ISSN (Print)1550-3607


Conference2017 IEEE International Conference on Communications, ICC 2017


Dive into the research topics of 'Performance of differential modulation under rf impairments'. Together they form a unique fingerprint.

Cite this