TY - GEN
T1 - Performance and ExIT chart analysis of BICM-ID for physical layer network coding
AU - Al-Rubaie, Alaa A.S.
AU - Tsimenidis, C. C.
AU - Johnston, M.
AU - Sharif, B.
PY - 2013
Y1 - 2013
N2 - Physical layer network coding (PNC) is a novel technique that allows two users to exchange messages in a wireless network. The most significant feature of PNC is the exploitation of interference at a relay due to incoming signals from two users, allowing an increase in throughput. In this paper, Extrinsic Information Transfer (ExIT) charts are employed to evaluate the performance of bit-interleaved coded modulation with iterative decoding (BICM-ID) combined with PNC. We address critical design issues to enhance decoding performance and provide analytical bounds on the performance. The analysis is extended for PNC employing Turbo and Low-Density Parity-Check (LDPC) codes to compare the performance with BICM-ID on the AWGN channel. Our results show that BICM-ID with PNC performs very similarly to a turbo-coded PNC scheme but, surprisingly, it outperforms a LDPC-coded PNC scheme, due to the Sum-Product decoding algorithm, which is less robust to unreliable symbols broadcast from the relay and needs more iterations to reach convergence. This shows that when considering trade-offs between performance and complexity, BICM-ID is an attractive coding scheme for wireless relay networks employing PNC.
AB - Physical layer network coding (PNC) is a novel technique that allows two users to exchange messages in a wireless network. The most significant feature of PNC is the exploitation of interference at a relay due to incoming signals from two users, allowing an increase in throughput. In this paper, Extrinsic Information Transfer (ExIT) charts are employed to evaluate the performance of bit-interleaved coded modulation with iterative decoding (BICM-ID) combined with PNC. We address critical design issues to enhance decoding performance and provide analytical bounds on the performance. The analysis is extended for PNC employing Turbo and Low-Density Parity-Check (LDPC) codes to compare the performance with BICM-ID on the AWGN channel. Our results show that BICM-ID with PNC performs very similarly to a turbo-coded PNC scheme but, surprisingly, it outperforms a LDPC-coded PNC scheme, due to the Sum-Product decoding algorithm, which is less robust to unreliable symbols broadcast from the relay and needs more iterations to reach convergence. This shows that when considering trade-offs between performance and complexity, BICM-ID is an attractive coding scheme for wireless relay networks employing PNC.
UR - http://www.scopus.com/inward/record.url?scp=84901449154&partnerID=8YFLogxK
U2 - 10.1109/ICECS.2013.6815390
DO - 10.1109/ICECS.2013.6815390
M3 - Conference contribution
AN - SCOPUS:84901449154
SN - 9781479924523
T3 - Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems
SP - 205
EP - 208
BT - 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems, ICECS 2013
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems, ICECS 2013
Y2 - 8 December 2013 through 11 December 2013
ER -