Performance and control optimisations using the adaptive torsion wing

W. G. Dettmer, M. I. Friswell, R. M. Ajaj, G. Allegri, A. T. Isikveren

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


This paper presents the Adaptive Torsion Wing (ATW) concept and performs two multidisciplinary design optimisation (MDO) studies by employing this novel concept across the wing of a representative UAV. The ATW concept varies the torsional stiffness of a two-spar wingbox by changing the enclosed area through the relative chordwise positions of the front and rear spar webs. The first study investigates the use of the ATW concept to improve the aerodynamic efficiency (lift-to-drag ratio) of the UAV. In contrast, the second study investigates the use of the concept to replace conventional ailerons and provide roll control. In both studies, the semi-span of the wing is split into five equal partitions and the concept is employed in each of them. The partitions are connected through thick ribs that allow the spar webs of each partition to translate independently of the webs of adjacent partitions and maintain a continuous load path across the wing span. An MDO suite consisting of a Genetic Algorithm (GA) optimiser coupled with a high-end low-fidelity aero-structural model was developed and employed in this paper.

Original languageBritish English
Pages (from-to)1061-1077
Number of pages17
JournalAeronautical Journal
Issue number1184
StatePublished - Oct 2012


Dive into the research topics of 'Performance and control optimisations using the adaptive torsion wing'. Together they form a unique fingerprint.

Cite this