Optoacoustic biomarkers of lipids, hemorrhage and inflammation in carotid atherosclerosis

Angelos Karlas, Nikolina Alexia Fasoula, Michael Kallmayer, Christoph Schäffer, Georgios Angelis, Nikoletta Katsouli, Mario Reidl, Felix Duelmer, Kenana Al Adem, Leontios Hadjileontiadis, Hans Henning Eckstein, Vasilis Ntziachristos

    Research output: Contribution to journalReview articlepeer-review

    3 Scopus citations

    Abstract

    Imaging plays a critical role in exploring the pathophysiology and enabling the diagnostics and therapy assessment in carotid artery disease. Ultrasonography, computed tomography, magnetic resonance imaging and nuclear medicine techniques have been used to extract of known characteristics of plaque vulnerability, such as inflammation, intraplaque hemorrhage and high lipid content. Despite the plethora of available techniques, there is still a need for new modalities to better characterize the plaque and provide novel biomarkers that might help to detect the vulnerable plaque early enough and before a stroke occurs. Optoacoustics, by providing a multiscale characterization of the morphology and pathophysiology of the plaque could offer such an option. By visualizing endogenous (e.g., hemoglobin, lipids) and exogenous (e.g., injected dyes) chromophores, optoacoustic technologies have shown great capability in imaging lipids, hemoglobin and inflammation in different applications and settings. Herein, we provide an overview of the main optoacoustic systems and scales of detail that enable imaging of carotid plaques in vitro, in small animals and humans. Finally, we discuss the limitations of this novel set of techniques while investigating their potential to enable a deeper understanding of carotid plaque pathophysiology and possibly improve the diagnostics in future patients with carotid artery disease.

    Original languageBritish English
    Article number1210032
    JournalFrontiers in Cardiovascular Medicine
    Volume10
    DOIs
    StatePublished - 2023

    Keywords

    • carotid artery disease
    • molecular imaging
    • MSOT
    • RSOM
    • stroke
    • unstable plaque
    • vulnerable plaque

    Fingerprint

    Dive into the research topics of 'Optoacoustic biomarkers of lipids, hemorrhage and inflammation in carotid atherosclerosis'. Together they form a unique fingerprint.

    Cite this