Abstract
Banana peels waste can be utilized to produce high quality biochar that can be incorporated into the soil for sustainable production of crops. This research analyzed several properties of the biochar produced from the banana peel at different temperatures, residence times and heating rates. This study focuses on the biochar yield and the EDX analysis of the biochar produced. Response surface methodology using central composite design (CCD) was used to optimize these parameters in the batch reactor pyrolysis system. These factors were operated in different ranges for banana peels, in which pyrolysis temperature (200 to 600°C), residence time (60 to 180 min) and heating rate (5 to 15°C·min−1) were varied using 20 experiments respectively. Quality of the biochar was determined based on the biochar yield and O/C ratio. The optimum biochar chosen from the CCD model was applied to several pots of Ipomoea aquatica in different biochar dosage levels of 0, 3, 9 and 15 g (0, 1, 3 and 5 wt% of soil) respectively. Pot experiment was conducted with completely randomized design (CRD) of one factor with five replications to correlate the average plant heights with the biochar dosage levels. Results showed that biochar dosage of 1% yields the highest average final Ipomoea aquatica plant height of 37.04 cm.
Original language | British English |
---|---|
Article number | 637846 |
Journal | Frontiers in Energy Research |
Volume | 8 |
DOIs | |
State | Published - 16 Feb 2021 |
Keywords
- banana peel
- biochar
- biomass
- completely randomized design
- pyrolysis
- response surface methodology