Abstract
Fetal cardiac monitoring is very helpful in the early detection of the potential risk of fetal cardiac abnormalities, which enables prompt preventative care and ensures safe births. As a result, it is crucial to regularly check on the embryonic heart. Methods of non-invasively fetal ECG extraction from maternal abdominal ECG signal are thoroughly discussed. Although fetal signals are generally obscured by maternal ECG signals and noise, extracting a clean fetal ECG is a significant difficulty. The majority of techniques for fetal ECG extraction include many extraction steps. We describe a unique method for splitting a single-channel maternal abdominal ECG into maternal and fetus ECG employing two parallel U-nets with transformer encoding, which we refer to as W-NEt TRansformers (W-NETR). Due to its enhanced capacity to simulate remote interactions and capture global context, the suggested pipeline utilizes the self-attention mechanism of the transformer. We tested the proposed pipeline on synthetic and real datasets and outperformed the current state-of-the-art deep learning models. The proposed model achieved the best results on both datasets for QRS detection precision, recall, and F1 scores. More specifically, it achieved F1 score of 99.88% and 98.9% on the real ADFECGDB and PCDB datasets, respectively. These encouraging results highlight the suggested W-NETR's effectiveness in precisely extracting the fetal ECG, which was achieved with high SSIM and PSNR values in the results. This provides the bed set for long-term maternal and fetal monitoring via portable devices as the proposed system performs real-time execution.
| Original language | British English |
|---|---|
| Pages (from-to) | 3198-3209 |
| Number of pages | 12 |
| Journal | IEEE Journal of Biomedical and Health Informatics |
| Volume | 27 |
| Issue number | 7 |
| DOIs | |
| State | Published - 1 Jul 2023 |
Keywords
- deep learning
- Fetal ECG
- non-invasive ECG extraction
- PSNR
- self-attention mechanism
- SSIM
- transformers
- W-NETR