TY - JOUR
T1 - On the excess of complex exponential systems in L2(-a,a)
AU - Zikkos, Elias
PY - 2005/8/1
Y1 - 2005/8/1
N2 - In this article we give new criteria for two complex sequences to have the same excess in the sense of Paley and Wiener in L2 (-a, a). As a result, we prove that given any positive integer q, a real number α ∈ (0, 1/(2 π)), and complex numbers ν0, νn = nq + i α log nq , n ≥ 1, the exponential system {tk eitνn: k = 0, 1,...,q - 1}n=-∞∞ has excess 0 in L2 (-π, π).
AB - In this article we give new criteria for two complex sequences to have the same excess in the sense of Paley and Wiener in L2 (-a, a). As a result, we prove that given any positive integer q, a real number α ∈ (0, 1/(2 π)), and complex numbers ν0, νn = nq + i α log nq , n ≥ 1, the exponential system {tk eitνn: k = 0, 1,...,q - 1}n=-∞∞ has excess 0 in L2 (-π, π).
KW - Excess
KW - Exponential systems
UR - http://www.scopus.com/inward/record.url?scp=19044394694&partnerID=8YFLogxK
U2 - 10.1016/j.jmaa.2004.10.048
DO - 10.1016/j.jmaa.2004.10.048
M3 - Article
AN - SCOPUS:19044394694
SN - 0022-247X
VL - 308
SP - 47
EP - 60
JO - Journal of Mathematical Analysis and Applications
JF - Journal of Mathematical Analysis and Applications
IS - 1
ER -