On post-resonance backward whirl in an overhung rotor with snubbing contact

Mohammad A. AL-Shudeifat, Michael Friswell, Oleg Shiryayev, C. Nataraj

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Rotordynamic systems are central to many aerospace and heavy-duty industrial applications. The vibrational response of such systems is usually associated with forward whirl (FW) and backward whirl (BW) precessions. It is well known in the literature that the BW precession generally precedes the passage through the critical FW resonance precession. Therefore, it can be named as a pre-resonance BW frequency (Pr-BW). However, another kind of BW has been recently observed to be immediately excited after the passage through the critical FW resonance frequency in cracked rotors with anisotropic supports during run-up and coast-down operations. Consequently, this kind of BW can be named as a post-resonance backward whirl (Po-BW) precession. The Pr-BW and Po-BW phenomena are investigated here with an overhung rotor system that exhibits snubbing contact and stiffness anisotropy in the supports. Incorporating the snubbing moment couple into the equations of motion of the considered overhung rotor model yields a piecewise and strongly nonlinear system. Full-spectrum analysis is employed to capture the BW zones of rotational speeds in the whirl response. Wavelet transform spectrum analysis is also employed to determine the frequency content in the Pr-BW and the Po-BW zones. Three cases are considered in this numerical study to explore the effect of the support stiffness isotropy and anisotropy with active and inactive snubbing contact on the Po-BW excitation. For all cases, the Po-BW zones of rotational speeds are found. Moreover, the broadness and recurrence of the Po-BW zones of rotational speeds are more prominent for the cases of active snubbing contact. Even though the Pr-BW and Po-BW zones are excited at different shaft rotational speeds, they are found to possess nearly similar BW frequencies which are less than the FW resonance frequency of the considered system.

Original languageBritish English
Pages (from-to)741-754
Number of pages14
JournalNonlinear Dynamics
Volume101
Issue number2
DOIs
StatePublished - 1 Jul 2020

Keywords

  • Backward whirl
  • Full-spectrum analysis
  • Overhung rotor
  • Post-resonance backward whirl
  • Rotor system

Fingerprint

Dive into the research topics of 'On post-resonance backward whirl in an overhung rotor with snubbing contact'. Together they form a unique fingerprint.

Cite this