TY - JOUR
T1 - On certain finite semigroups of order-decreasing transformations I
AU - Laradji, A.
AU - Umar, A.
PY - 2004/9
Y1 - 2004/9
N2 - Let Dn (script O signn) be the semigroup of all finite order-decreasing (order-preserving) full transformations of an n-element chain, and let D(n,r) = {α ∈ Dn : |Im α| ≤ r} (C(n,r) = D(n,r) ∩ script O signn) be the two-sided ideal of Dn (Dn ∩ script O signn). Then it is shown that for r ≥ 2, the Rees quotient semigroup DPr(n) = D(n,r)/D(n,r-1) (CPr(n) = C(n,r)/C(n,r- 1)) is an R-trivial ( J-trivial) idempotent-generated 0*-bisimple primitive abundant semigroup. The order of CPr(n) is shown to be 1 + (n-1 r-1) ( nr ) /(n - r + 1). Finally, the rank and idempotent ranks of CPr(n) (r < n) are both shown to be equal to ( n-1r-1 ).
AB - Let Dn (script O signn) be the semigroup of all finite order-decreasing (order-preserving) full transformations of an n-element chain, and let D(n,r) = {α ∈ Dn : |Im α| ≤ r} (C(n,r) = D(n,r) ∩ script O signn) be the two-sided ideal of Dn (Dn ∩ script O signn). Then it is shown that for r ≥ 2, the Rees quotient semigroup DPr(n) = D(n,r)/D(n,r-1) (CPr(n) = C(n,r)/C(n,r- 1)) is an R-trivial ( J-trivial) idempotent-generated 0*-bisimple primitive abundant semigroup. The order of CPr(n) is shown to be 1 + (n-1 r-1) ( nr ) /(n - r + 1). Finally, the rank and idempotent ranks of CPr(n) (r < n) are both shown to be equal to ( n-1r-1 ).
UR - http://www.scopus.com/inward/record.url?scp=4744376256&partnerID=8YFLogxK
U2 - 10.1007/s00233-004-0101-9
DO - 10.1007/s00233-004-0101-9
M3 - Article
AN - SCOPUS:4744376256
SN - 0037-1912
VL - 69
SP - 184
EP - 200
JO - Semigroup Forum
JF - Semigroup Forum
IS - 2
ER -