Abstract
The identification of continuous abnormal lung sounds, like wheezes, in the total breathing cycle is of great importance in the diagnosis of obstructive airways pathologies. To this vein, the current work introduces an efficient method for the detection of wheezes, based on the time-scale representation of breath sound recordings. The employed Continuous Wavelet Transform is proven to be a valuable tool at this direction, when combined with scale-dependent thresholding. Analysis of lung sound recordings from 'wheezing' patients shows promising performance in the detection and extraction of wheezes from the background noise and reveals its potentiality for data-volume reduction in long-term wheezing screening, such as in sleep-laboratories.
Original language | British English |
---|---|
Pages (from-to) | 3832-3835 |
Number of pages | 4 |
Journal | Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings |
Volume | 26 V |
State | Published - 2004 |
Event | Conference Proceedings - 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2004 - San Francisco, CA, United States Duration: 1 Sep 2004 → 5 Sep 2004 |
Keywords
- Breath sounds
- Continuous wavelet transform
- Detection/denoising
- Scalogram
- Wheezes