TY - JOUR
T1 - Oil Recovery Performance by Surfactant Flooding
T2 - A Perspective on Multiscale Evaluation Methods
AU - Al-Azani, Khaled
AU - Abu-Khamsin, Sidqi
AU - Al-Abdrabalnabi, Ridha
AU - Kamal, Muhammad Shahzad
AU - Patil, Shirish
AU - Zhou, Xianmin
AU - Hussain, Syed Muhammad Shakil
AU - Al Shalabi, Emad
N1 - Funding Information:
This publication is based on work supported by the KFUPM-KU Joint Research Program. Authors at KFUPM would like to acknowledge the support received under Grant KU-201-001. The author at Khalifa University acknowledges the support received under award no. KFUPM-KU-2020-14.
Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
PY - 2022/11/17
Y1 - 2022/11/17
N2 - Chemical-enhanced oil recovery (cEOR) is a class of techniques commonly used to extract hydrocarbon fluids from reservoir rocks beyond conventional waterflooding. Surfactants are among the chemical agents employed in a cEOR process, as they aid in enhancing oil recovery by lowering the oil-water interfacial tension (IFT) and altering the rock wettability toward less oil-wet conditions. Understanding the flow characteristics and mechanisms involved during surfactant flooding helps improve the performance of injected surfactants and results in higher oil recovery. The objective of this review is to outline the recent applications of the different methods employed to understand the behavior and mechanisms involved during surfactant-enhanced oil recovery. The review begins with a general background highlighting the basic characteristics of surfactants and the main mechanisms by which they exert their influence. Recent studies conducted to investigate the oil recovery performance through different methods are then presented, including traditional coreflooding experiments, microfluidics studies, and oil recovery through sand packs. The methodology of the analysis and the interpretation of the data obtained from the different oil recovery tests, including oil recovery factor, pressure data, and relative permeability, are also described. Pore-scale analysis and imaging methods including nuclear magnetic resonance (NMR), magnetic resonance imaging (MRI), and X-ray medical and microcomputed tomography (μCT) scanning and their applicability in assessing the recovery performance are described. Finally, a few examples of field monitoring methods for surfactant flooding are highlighted. This review provides knowledge of the different multiscale evaluation methods and their applicability during surfactant flooding.
AB - Chemical-enhanced oil recovery (cEOR) is a class of techniques commonly used to extract hydrocarbon fluids from reservoir rocks beyond conventional waterflooding. Surfactants are among the chemical agents employed in a cEOR process, as they aid in enhancing oil recovery by lowering the oil-water interfacial tension (IFT) and altering the rock wettability toward less oil-wet conditions. Understanding the flow characteristics and mechanisms involved during surfactant flooding helps improve the performance of injected surfactants and results in higher oil recovery. The objective of this review is to outline the recent applications of the different methods employed to understand the behavior and mechanisms involved during surfactant-enhanced oil recovery. The review begins with a general background highlighting the basic characteristics of surfactants and the main mechanisms by which they exert their influence. Recent studies conducted to investigate the oil recovery performance through different methods are then presented, including traditional coreflooding experiments, microfluidics studies, and oil recovery through sand packs. The methodology of the analysis and the interpretation of the data obtained from the different oil recovery tests, including oil recovery factor, pressure data, and relative permeability, are also described. Pore-scale analysis and imaging methods including nuclear magnetic resonance (NMR), magnetic resonance imaging (MRI), and X-ray medical and microcomputed tomography (μCT) scanning and their applicability in assessing the recovery performance are described. Finally, a few examples of field monitoring methods for surfactant flooding are highlighted. This review provides knowledge of the different multiscale evaluation methods and their applicability during surfactant flooding.
UR - http://www.scopus.com/inward/record.url?scp=85140997179&partnerID=8YFLogxK
U2 - 10.1021/acs.energyfuels.2c02544
DO - 10.1021/acs.energyfuels.2c02544
M3 - Review article
AN - SCOPUS:85140997179
SN - 0887-0624
VL - 36
SP - 13451
EP - 13478
JO - Energy and Fuels
JF - Energy and Fuels
IS - 22
ER -