TY - JOUR
T1 - Oblique propagation of arbitrary amplitude electron acoustic solitary waves in magnetized kappa-distributed plasmas
AU - Sultana, S.
AU - Kourakis, I.
AU - Hellberg, M. A.
PY - 2012/10
Y1 - 2012/10
N2 - The linear and nonlinear properties of large-amplitude electron-acoustic waves are investigated in a magnetized plasma comprising two distinct electron populations (hot and cold) and immobile ions. The hot electrons are assumed to be in a non-Maxwellian state, characterized by an excess of superthermal particles, here modeled by a kappa-type long-tailed distribution function. Waves are assumed to propagate obliquely to the ambient magnetic field. Two types of electrostatic modes are shown to exist in the linear regime, and their properties are briefly analyzed. A nonlinear pseudopotential-type analysis reveals the existence of large-amplitude electrostatic solitary waves and allows for an investigation of their propagation characteristics and existence domain, in terms of the soliton speed (Mach number). The effects of the key plasma configuration parameters, namely the superthermality index and the cold electron density, on the soliton characteristics and existence domain, are studied. The role of obliqueness and magnetic field is discussed.
AB - The linear and nonlinear properties of large-amplitude electron-acoustic waves are investigated in a magnetized plasma comprising two distinct electron populations (hot and cold) and immobile ions. The hot electrons are assumed to be in a non-Maxwellian state, characterized by an excess of superthermal particles, here modeled by a kappa-type long-tailed distribution function. Waves are assumed to propagate obliquely to the ambient magnetic field. Two types of electrostatic modes are shown to exist in the linear regime, and their properties are briefly analyzed. A nonlinear pseudopotential-type analysis reveals the existence of large-amplitude electrostatic solitary waves and allows for an investigation of their propagation characteristics and existence domain, in terms of the soliton speed (Mach number). The effects of the key plasma configuration parameters, namely the superthermality index and the cold electron density, on the soliton characteristics and existence domain, are studied. The role of obliqueness and magnetic field is discussed.
UR - http://www.scopus.com/inward/record.url?scp=84866389497&partnerID=8YFLogxK
U2 - 10.1088/0741-3335/54/10/105016
DO - 10.1088/0741-3335/54/10/105016
M3 - Article
AN - SCOPUS:84866389497
SN - 0741-3335
VL - 54
JO - Plasma Physics and Controlled Fusion
JF - Plasma Physics and Controlled Fusion
IS - 10
M1 - 105016
ER -