Non-equilibrium microscale thermomechanical modeling of bimetallic particulate fractal structures during ball milling fabrication

Matteo Aureli, Constantine C. Doumanidis, I. E. Gunduz, Aseel Gamal Suliman Hussien, Yiliang Liao, Syed Murtaza Jaffar, Claus Rebholz, Charalabos C. Doumanidis

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Nanostructured bimetallic reactive multilayers can be conveniently produced by ball milling of elemental powders. This research explores the non-equilibrium microscale conductive thermal transport in ball-milled particulate fractal structures during fabrication, arising from heat dissipation by bulk plastic deformation and surface friction. Upon impactor collisions, temperature increments are determined at interface joints and domain volumes using Green's functions, mirrored by source images with respect to warped ellipsoid domain boundaries. Heat source efficiency is calibrated via laboratory data to compensate for thermal expansion and impactor inelasticity, and the thermal analysis is coupled to a dynamic mechanics model of the particulate fracture. This thermomechanical model shows good agreement with the fractal dimensions of the observed microstructure from ball milling experiments. The model is intended to provide a comprehensive physical understanding of the fundamental process mechanism. In addition, the model could serve as a real-time thermal observer for closed-loop process control, as well as for interfacial diffusion and reaction analysis during ball milling.

Original languageBritish English
Article number025118
JournalJournal of Applied Physics
Volume122
Issue number2
DOIs
StatePublished - 14 Jul 2017

Fingerprint

Dive into the research topics of 'Non-equilibrium microscale thermomechanical modeling of bimetallic particulate fractal structures during ball milling fabrication'. Together they form a unique fingerprint.

Cite this