TY - JOUR
T1 - New performance correlations of municipal solid waste gasification for sustainable syngas fuel production
AU - Nemmour, Amira
AU - Inayat, Abrar
AU - Janajreh, Isam
AU - Ghenai, Chaouki
N1 - Funding Information:
The authors gratefully acknowledge the financial support by the University of Sharjah and the Research Institute for Sciences and Engineering (RISE) – Targeted Research Project (Plasma Gasification Project Ref Number 1702040686).
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2022/10
Y1 - 2022/10
N2 - Municipal solid waste (MSW) is one of the most important carbonaceous solid waste collected by the municipality that includes residential, industrial, institutional, commercial and construction waste. In this work, modelling and simulation analyses using ASPEN plus simulation software integrated with response surface methodology (RSM)-based optimization method are used to investigate the performance of MSW gasification process. The principal objective is to develop new correlations for the key performance indicators of MSW gasification (hydrogen H2 and carbon monoxide CO contents in the syngas, cold gasification efficiency CGE, and carbon conversion CC) versus three main input factors (gasification temperature 600–1000 ∘C , equivalence ratio 0.1–0.5, and oxygen content in air 21–100%). The MSW gasification model was developed using Aspen Plus and the results were validated with experimental data. The comparison showed a good agreement between the simulation and experimental results. RSM based on central composite design (CCD) and analysis of variance (ANOVA) were used to optimize the MSW gasification process. New correlations for the output variable (H2, CO, CGE, and CC) of the gasification process were presented by second-order polynomial equations. The results showed that the coefficients of determination R2 for the predicted model for H2, CO, CGE, and CC were respectively 0.9913, 0.9630, 0.9618 and 0.9730 (high accuracy of the new proposed correlations or the regression models). The optimized gasifier operating parameters to maximize the H2, CO, CGE, and CC are T = 1000 ∘C , ER = 0.132 and oxygen = 100%. The optimum values for the H2, CO, CGE, and CC are 44.86%, 53.8%, 95.04%, and 79.96%, respectively. The results showed that the most significant factors affecting the H2, CO, CGE, and CC in order of importance are respectively gasification temperature, oxygen percentage and equivalence ratio.
AB - Municipal solid waste (MSW) is one of the most important carbonaceous solid waste collected by the municipality that includes residential, industrial, institutional, commercial and construction waste. In this work, modelling and simulation analyses using ASPEN plus simulation software integrated with response surface methodology (RSM)-based optimization method are used to investigate the performance of MSW gasification process. The principal objective is to develop new correlations for the key performance indicators of MSW gasification (hydrogen H2 and carbon monoxide CO contents in the syngas, cold gasification efficiency CGE, and carbon conversion CC) versus three main input factors (gasification temperature 600–1000 ∘C , equivalence ratio 0.1–0.5, and oxygen content in air 21–100%). The MSW gasification model was developed using Aspen Plus and the results were validated with experimental data. The comparison showed a good agreement between the simulation and experimental results. RSM based on central composite design (CCD) and analysis of variance (ANOVA) were used to optimize the MSW gasification process. New correlations for the output variable (H2, CO, CGE, and CC) of the gasification process were presented by second-order polynomial equations. The results showed that the coefficients of determination R2 for the predicted model for H2, CO, CGE, and CC were respectively 0.9913, 0.9630, 0.9618 and 0.9730 (high accuracy of the new proposed correlations or the regression models). The optimized gasifier operating parameters to maximize the H2, CO, CGE, and CC are T = 1000 ∘C , ER = 0.132 and oxygen = 100%. The optimum values for the H2, CO, CGE, and CC are 44.86%, 53.8%, 95.04%, and 79.96%, respectively. The results showed that the most significant factors affecting the H2, CO, CGE, and CC in order of importance are respectively gasification temperature, oxygen percentage and equivalence ratio.
KW - Gasification
KW - Modelling
KW - Municipal solid waste
KW - New correlations
KW - Optimization
KW - Response surface method
KW - Syngas
KW - Thermal conversion process
UR - http://www.scopus.com/inward/record.url?scp=85122857548&partnerID=8YFLogxK
U2 - 10.1007/s13399-021-02237-8
DO - 10.1007/s13399-021-02237-8
M3 - Article
AN - SCOPUS:85122857548
SN - 2190-6815
VL - 12
SP - 4271
EP - 4289
JO - Biomass Conversion and Biorefinery
JF - Biomass Conversion and Biorefinery
IS - 10
ER -