Abstract
This paper examines the possibility of the application of a supported ionic liquid membrane (SILM) for natural gas purification. The ionic liquid (IL) 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([emim][FAP]) was impregnated successfully in the γ-alumina layer of a tubular porous asymmetric membrane. The pure gas permeability of natural gas components, such as carbon dioxide (CO2), methane (CH4), ethane (C2H6) and propane (C3H8) were tested through the SILM at a trans-membrane pressure of 0.7MPa and temperature of 313K. The following trend of pure gas permeability was observed for the SILM in this study: PCO2>PCH4>PC2H6>PC3H8. Moreover, the CO2/CH4 ideal permselectivity was calculated. Mixed gas permeability and permselectivity for the binary mixture of CO2/CH4 (50/50%, v/v) was also measured. The mixed gas permselectivity (α=1.15) was found to be much lower than the ideal permselectivity (α=3.12). The performance of the SILM was significantly affected by the presence of water, which is also generally present in natural gas. Even though [emim][FAP] is an excellent alternative absorbent with high CO2 absorptive capacity and ideal solubility selectivity for CO2/CH4 (S=9.69), the incorporation of this IL in a SILM is less promising for the removal of CO2 from natural gas streams, because the permselectivity for CO2/CH4 is low.
Original language | British English |
---|---|
Pages (from-to) | 80-86 |
Number of pages | 7 |
Journal | Journal of Membrane Science |
Volume | 484 |
DOIs | |
State | Published - 5 Jun 2015 |
Keywords
- Diffusivity
- Natural gas
- Permeability
- Permselectivity
- Supported ionic liquid membrane (SILM)