MXene and graphene coated multifunctional fiber reinforced aerospace composites with sensing and EMI shielding abilities

M. S. Irfan, M. A. Ali, T. Khan, S. Anwer, K. Liao, Rehan Umer

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

This work is focused on using MXene and reduced graphene oxide coated glass fabrics for manufacturing multifunctional aerospace composites. The coated fabrics acted as sensors and provided useful information about key manufacturing parameters during processing, and mechanical response of the final composite. The electrical resistance changes during resin infusion manufacturing stages such as compaction, resin flow, and resin cure were monitored experimentally. In addition to process monitoring, the utility of manufactured laminates for structural performance was demonstrated by monitoring the piezoresistive response during quasi-static and cyclic flexural tests. The dynamic mechanical analysis (DMA) experiments showed that these in-situ fabric sensors could also detect the thermomechanical response of the composite via monitoring the piezoresistive changes when the temperature is changing. Finally, the electromagnetic interference (EMI) shielding effectiveness was also measured for both types of composites, where MXene based composites showed better shielding effectiveness as compared to reduced graphene oxide-based composites.

Original languageBritish English
Article number107351
JournalComposites Part A: Applied Science and Manufacturing
Volume165
DOIs
StatePublished - Feb 2023

Keywords

  • 2D materials
  • Mechanical properties
  • Process monitoring
  • Structural health monitoring

Fingerprint

Dive into the research topics of 'MXene and graphene coated multifunctional fiber reinforced aerospace composites with sensing and EMI shielding abilities'. Together they form a unique fingerprint.

Cite this