Abstract
Carbon Capture and Storage (CCS) is an essential technology for CO2 emissions reductions, which will allow us to continue consuming fossil fuels in the short to medium term. In this work, we developed a multiscale modeling and optimization approach that links detailed models of the capture plant, compression train and pipelines with the CO2 supply-chain network model. This was used to find the cost-optimal CO2 network considering a case-study of meeting a national reduction target in the United Arab Emirates that supplies CO2 for EOR activities. The main decision variables were the optimal location and operating conditions of each CO2 capture and compression plant in addition to the topology and sizing of the pipelines while considering the whole-system behaviour. A key result of our study was that the cost-optimal degree of capture should be included as a degree of freedom in the design of CO2 networks and it is a function of several site-specific factors, including exhaust gas characteristics, proximity to transportation networks and adequate geological storage capacity. This conclusion serves to underscore the need to comprehend the science governing the physical behaviour at different scales and the importance of a whole-system analysis of potential CO2 networks.
Original language | British English |
---|---|
Article number | 102925 |
Journal | International Journal of Greenhouse Gas Control |
Volume | 94 |
DOIs | |
State | Published - Mar 2020 |
Keywords
- CCS
- CO network
- CO transport
- Cost
- Optimization
- Supply-chain