MRI RF array decoupling method with magnetic wall distributed filters

Ian R.O. Connell, Kyle M. Gilbert, Mohamed A. Abou-Khousa, Ravi S. Menon

Research output: Contribution to journalArticlepeer-review

29 Scopus citations


Multi-channel radio-frequency (RF) transmit coil arrays have been developed to mitigate many of the RF challenges associated with ultra-high field (≥ 7T) magnetic resonance imaging (MRI). These arrays can be used for parallel RF transmission to produce spatially tailored RF excitation over the field of view. However, the realization of such arrays remains a challenge due to significant reactive interaction between the array coils, i.e., mutual coupling. In this paper, a novel bandstop filter ('magnetic wall') is used in an MRI RF transmit array to decouple individual coils. The proposed decoupling method is inspired by periodic resonator designs commonly used in frequency selective surfaces and is used as a distributed RF filter to suppress the transmission of RF energy between coils in an array. The decoupling of the magnetic wall (MW) is analyzed in terms of equivalent circuits that include terms for both magnetic and electric coupling for an arbitrary number of MW resonant conductors. Both frequency-and time-domain full-wave simulations were performed to analyze a specific MW structure. The performance of the proposed method is experimentally validated for both first-order coupling and higher-order coupling with a three-coil 7T array setup. Analysis and measurements confirm that the rejection band of the MW can be tuned to provide high isolation in the presence of cross coupling between RF array coils.

Original languageBritish English
Article number6979238
Pages (from-to)825-835
Number of pages11
JournalIEEE Transactions on Medical Imaging
Issue number4
StatePublished - 1 Apr 2015


  • Decoupling
  • frequency selective surface
  • magnetic resonance imaging (MRI) arrays
  • magnetic wall
  • mutual coupling
  • radio-frequency (RF) coil
  • RF planar filter


Dive into the research topics of 'MRI RF array decoupling method with magnetic wall distributed filters'. Together they form a unique fingerprint.

Cite this