Modeling and simulation of transition zones in tight carbonate reservoirs by incorporation of improved rock typing and hysteresis models

Dai Fu, Hadi Belhaj, Achinta Bera

    Research output: Contribution to journalArticlepeer-review

    8 Scopus citations


    Transition zones in tight heterogeneous carbonate reservoirs contain a considerable amount of original oil in place. Identifying and characterizing the petrophysical flow units of the transition zone is crucial for reserve estimation and performance prediction. This paper presents a petrophysical rock typing method based on decoding pore-size distributions from mercury injection capillary pressure (MICP) data by using Thomeer hyperboles, with proven application in a tight carbonate reservoir in the Middle East region. In this study, 150 MICP data sets were used which were type curve matched using Thomeer Hyperbolas with closure correction. Multivariate clustering method has been employed to divide the samples into a number of groups for the purpose of both representing the reservoir heterogeneity and simplifying rock typing for dynamic modeling. From the MICP curves, it has been found that mainly monomodal pore systems prevail in the targeted transition zone and five different rock types are identified. It has been observed that most of the pore throat types are meso and micro types with the negligible existence of nano-pore type. The intrinsic advantage of this rock typing method is to describe the pore system quantitatively, which is different from other rock typing methods based on the apparent poro-perm relationship. The comparison of the grouped data with the petrophysical properties showed that different pore-size distributions yield similar porosity and permeability values, reinforcing the importance of grouping rocks based on pore systems instead of their resulting properties. Additionally, a study has also been conducted to improve understanding on the relative permeability in transition zone by implementing an up-to-date model for the mix-wet condition. The work in this paper provides a guide for the further understanding of rock typing and modeling of transition zones in carbonate reservoirs.

    Original languageBritish English
    Pages (from-to)1051-1068
    Number of pages18
    JournalJournal of Petroleum Exploration and Production Technology
    Issue number4
    StatePublished - 1 Dec 2018


    • Carbonate reservoirs
    • Dynamic model
    • Hysteresis
    • Pore geometry
    • Rock typing
    • Thomeer hyperboles
    • Transition zones


    Dive into the research topics of 'Modeling and simulation of transition zones in tight carbonate reservoirs by incorporation of improved rock typing and hysteresis models'. Together they form a unique fingerprint.

    Cite this