Abstract
Optimizing the properties of carbon electrodes remains a critical challenge in the development of high-efficiency vanadium redox flow batteries. In this work, we correlate the battery performance with microstructures and surface chemistries through the controllable fabrication of perforated carbon platelets derived from metal-organic frameworks. With Raman and X-ray photoelectron spectroscopy analyses, we identify topological carbon defects and nitrogen-dopants as active sites for the oxidation of VO2+, as corroborated by the density functional theory. The optimal PCP electrode rich in these structural features is fabricated at a carbonization temperature of 800 °C to provide high electrical conductivity and a large surface area. It delivers energy efficiencies of 82.0 and 69.7% at current densities of 200 and 400 mA cm−2, respectively in a VRFB, along with high cycling stability. Further dissection of the polarization resistance confirms the catalytic activity as the underlying reason for the outstanding performance.
Original language | British English |
---|---|
Pages (from-to) | 5648-5656 |
Number of pages | 9 |
Journal | Journal of Materials Chemistry A |
Volume | 9 |
Issue number | 9 |
DOIs | |
State | Published - 7 Mar 2021 |