TY - JOUR
T1 - Metal Organic Framework — Based Mixed Matrix Membranes for Carbon Dioxide Separation
T2 - Recent Advances and Future Directions
AU - Muthukumaraswamy Rangaraj, Vengatesan
AU - Wahab, Mohammad A.
AU - Reddy, K. Suresh Kumar
AU - Kakosimos, George
AU - Abdalla, Omnya
AU - Favvas, Evangelos P.
AU - Reinalda, Donald
AU - Geuzebroek, Frank
AU - Abdala, Ahmed
AU - Karanikolos, Georgios N.
N1 - Funding Information:
The authors acknowledge support by the Gas Research Center (GRC16001 and GRC16002), and the Center for Catalysis and Separations (CeCaS, award RC2-2018-024) of Khalifa University.
Publisher Copyright:
© Copyright © 2020 Muthukumaraswamy Rangaraj, Wahab, Reddy, Kakosimos, Abdalla, Favvas, Reinalda, Geuzebroek, Abdala and Karanikolos.
PY - 2020/7/3
Y1 - 2020/7/3
N2 - Gas separation and purification using polymeric membranes is a promising technology that constitutes an energy-efficient and eco-friendly process for large scale integration. However, pristine polymeric membranes typically suffer from the trade-off between permeability and selectivity represented by the Robeson's upper bound. Mixed matrix membranes (MMMs) synthesized by the addition of porous nano-fillers into polymer matrices, can enable a simultaneous increase in selectivity and permeability. Among the various porous fillers, metal-organic frameworks (MOFs) are recognized in recent days as a promising filler material for the fabrication of MMMs. In this article, we review representative examples of MMMs prepared by dispersion of MOFs into polymer matrices or by deposition on the surface of polymeric membranes. Addition of MOFs into other continuous phases, such as ionic liquids, are also included. CO2 separation from hydrocarbons, H2, N2, and the like is emphasized. Hybrid fillers based on composites of MOFs with other nanomaterials, e.g., of MOF/GO, MOF/CNTs, and functionalized MOFs, are also presented and discussed. Synergetic effects and the result of interactions between filler/matrix and filler/filler are reviewed, and the impact of filler and matrix types and compositions, filler loading, surface area, porosity, pore sizes, and surface functionalities on tuning permeability are discoursed. Finally, selectivity, thermal, chemical, and mechanical stability of the resulting MMMs are analyzed. The review concludes with a perspective of up-scaling of such systems for CO2 separation, including an overview of the most promising MMM systems.
AB - Gas separation and purification using polymeric membranes is a promising technology that constitutes an energy-efficient and eco-friendly process for large scale integration. However, pristine polymeric membranes typically suffer from the trade-off between permeability and selectivity represented by the Robeson's upper bound. Mixed matrix membranes (MMMs) synthesized by the addition of porous nano-fillers into polymer matrices, can enable a simultaneous increase in selectivity and permeability. Among the various porous fillers, metal-organic frameworks (MOFs) are recognized in recent days as a promising filler material for the fabrication of MMMs. In this article, we review representative examples of MMMs prepared by dispersion of MOFs into polymer matrices or by deposition on the surface of polymeric membranes. Addition of MOFs into other continuous phases, such as ionic liquids, are also included. CO2 separation from hydrocarbons, H2, N2, and the like is emphasized. Hybrid fillers based on composites of MOFs with other nanomaterials, e.g., of MOF/GO, MOF/CNTs, and functionalized MOFs, are also presented and discussed. Synergetic effects and the result of interactions between filler/matrix and filler/filler are reviewed, and the impact of filler and matrix types and compositions, filler loading, surface area, porosity, pore sizes, and surface functionalities on tuning permeability are discoursed. Finally, selectivity, thermal, chemical, and mechanical stability of the resulting MMMs are analyzed. The review concludes with a perspective of up-scaling of such systems for CO2 separation, including an overview of the most promising MMM systems.
KW - CO
KW - membranes
KW - mixture
KW - MOF
KW - permeability
KW - polymers
KW - selectivity
KW - separation
UR - http://www.scopus.com/inward/record.url?scp=85087864340&partnerID=8YFLogxK
U2 - 10.3389/fchem.2020.00534
DO - 10.3389/fchem.2020.00534
M3 - Review article
AN - SCOPUS:85087864340
SN - 2296-2646
VL - 8
JO - Frontiers in Chemistry
JF - Frontiers in Chemistry
M1 - 534
ER -