Metabolomics based markers predict type 2 diabetes in a 14-year follow-up study

Jun Liu, Sabina Semiz, Sven J. van der Lee, Ashley van der Spek, Aswin Verhoeven, Jan B. van Klinken, Eric Sijbrands, Amy C. Harms, Thomas Hankemeier, Ko Willems van Dijk, Cornelia M. van Duijn, Ayşe Demirkan

Research output: Contribution to journalArticlepeer-review

67 Scopus citations


Background: The growing field of metabolomics has opened up new opportunities for prediction of type 2 diabetes (T2D) going beyond the classical biochemistry assays. Objectives: We aimed to identify markers from different pathways which represent early metabolic changes and test their predictive performance for T2D, as compared to the performance of traditional risk factors (TRF). Methods: We analyzed 2776 participants from the Erasmus Rucphen Family study from which 1571 disease free individuals were followed up to 14-years. The targeted metabolomics measurements at baseline were performed by three different platforms using either nuclear magnetic resonance spectroscopy or mass spectrometry. We selected 24 T2D markers by using Least Absolute Shrinkage and Selection operator (LASSO) regression and tested their association to incidence of disease during follow-up. Results: The 24 markers i.e. high-density, low-density and very low-density lipoprotein sub-fractions, certain triglycerides, amino acids, and small intermediate compounds predicted future T2D with an area under the curve (AUC) of 0.81. The performance of the metabolic markers compared to glucose was significantly higher among the young (age < 50 years) (0.86 vs. 0.77, p-value <0.0001), the female (0.88 vs. 0.84, p-value =0.009), and the lean (BMI < 25 kg/m2) (0.85 vs. 0.80, p-value =0.003). The full model with fasting glucose, TRFs, and metabolic markers yielded the best prediction model (AUC = 0.89). Conclusions: Our novel prediction model increases the long-term prediction performance in combination with classical measurements, brings a higher resolution over the complexity of the lipoprotein component, increasing the specificity for individuals in the low risk group.

Original languageBritish English
Article number104
Issue number9
StatePublished - 1 Sep 2017


  • Early biomarkers
  • Metabolites
  • Metabolomics
  • Prediction
  • Prospective study
  • Type 2 diabetes


Dive into the research topics of 'Metabolomics based markers predict type 2 diabetes in a 14-year follow-up study'. Together they form a unique fingerprint.

Cite this