Meso-microscale coupling for wind resource assessment using averaged atmospheric stability conditions

Pablo Durán, Cathérine Meißner, Kendall Rutledge, Ricardo Fonseca, Javier Martin-Torres, Muyiwa S. Adaramola

    Research output: Contribution to journalArticlepeer-review

    12 Scopus citations

    Abstract

    A methodology to couple Numerical Weather Prediction (NWP) models with steady-state Computational Fluid Dynamic (CFD) models for wind resource assessment applications is proposed. NWP simulations are averaged according to their atmospheric stability and wind direction. The averaged NWP simulations are used to generate the initial and boundary conditions of the CFD model. The method is applied using one year of Weather Research and Forecasting (WRF) simulations at the Honkajoki wind farm in Finland and validated by Sonic Detection and Ranging (SODAR) measurements at the site. It is shown that coupled simulations reproduce a more realistic shear for heights above 150 m. In terms of estimated energy production, there is not a big difference between coupled and standalone models. Nevertheless, a considerable difference in the horizontal wind speed patterns can be seen between the coupled and non-coupled approaches. The WRF model resolution has only a small influence on the coupled CFD results.

    Original languageBritish English
    Pages (from-to)273-291
    Number of pages19
    JournalMeteorologische Zeitschrift
    Volume28
    Issue number4
    DOIs
    StatePublished - 2019

    Keywords

    • Boundary conditions
    • Computational Fluid Dynamics (CFD)
    • Mesoscale microscale coupling
    • Physical downscaling
    • Wind energy resource assessment

    Fingerprint

    Dive into the research topics of 'Meso-microscale coupling for wind resource assessment using averaged atmospheric stability conditions'. Together they form a unique fingerprint.

    Cite this