Measurement of cosmic rays with LOFAR

L. Rossetto, S. Buitink, A. Corstanje, J. E. Enriquez, H. Falcke, J. R. Hörandel, A. Nelles, J. P. Rachen, P. Schellart, O. Scholten, S. Ter Veen, S. Thoudam, T. N.G. Trinh

Research output: Contribution to journalConference articlepeer-review

Abstract

The LOw Frequency ARay (LOFAR) is a multipurpose radio-antenna array aimed to detect radio signals in the 10 - 240 MHz frequency range, covering a large surface in Northern Europe with a higher density in the Northern Netherlands. Radio emission in the atmosphere is produced by cosmic-ray induced air showers through the interaction of charged particles with the Earth magnetic field. The detection of radio signals allows to reconstruct several properties of the observed cascade. We review here all important results achieved in the last years. We proved that the radio-signal distribution at ground level is described by a two-dimensional pattern, which is well fitted by a double Gaussian function. The radio-signal arrival time and polarization have been measured, thus providing additional information on the extensive air shower geometry, and on the radio emission processes. We also showed that the radio signal reaches ground in a thin, curved wavefront which is best parametrized by a hyperboloid shape centred around the shower axis. Radio emission has also been studied under thunderstorm conditions and compared to fair weather conditions. Moreover, by using a hybrid reconstruction technique, we performed mass composition measurements in the energy range 1017 - 1018 eV.

Original languageBritish English
Article number52035
JournalJournal of Physics: Conference Series
Volume718
Issue number5
DOIs
StatePublished - 9 Jun 2016
Event14th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2015 - Torino, Italy
Duration: 7 Sep 201511 Sep 2015

Fingerprint

Dive into the research topics of 'Measurement of cosmic rays with LOFAR'. Together they form a unique fingerprint.

Cite this