TY - GEN
T1 - Matching Game for Optimized Association in Quantum Communication Networks
AU - Chehimi, Mahdi
AU - Simon, Bernd
AU - Saad, Walid
AU - Klein, Anja
AU - Towsley, Don
AU - Debbah, Mérouane
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Enabling quantum switches (QSs) to serve requests submitted by quantum end nodes in quantum communication networks (QCNs) is a challenging problem due to the heterogeneous fidelity requirements of the submitted requests and the limited resources of the QCN. Effectively determining which requests are served by a given QS is fundamental to foster developments in practical QCN applications, like quantum data centers. However, the state-of-the-art on QS operation has overlooked this association problem, and it mainly focused on QCNs with a single QS. In this paper, the request-QS association problem in QCNs is formulated as a matching game that captures the limited QCN resources, heterogeneous application-specific fidelity requirements, and scheduling of the different QS operations. To solve this game, a swap-stable request-QS association (RQSA) algorithm is proposed while considering partial QCN information availability. Extensive simulations are conducted to validate the effectiveness of the proposed RQSA algorithm. Simulation results show that the proposed RQSA algorithm achieves a near-optimal (within 5%) performance in terms of the percentage of served requests and overall achieved fidelity, while outperforming benchmark greedy solutions by over 13%. Moreover, the proposed RQSA algorithm is shown to be scalable and maintain its near-optimal performance even when the size of the QCN increases.
AB - Enabling quantum switches (QSs) to serve requests submitted by quantum end nodes in quantum communication networks (QCNs) is a challenging problem due to the heterogeneous fidelity requirements of the submitted requests and the limited resources of the QCN. Effectively determining which requests are served by a given QS is fundamental to foster developments in practical QCN applications, like quantum data centers. However, the state-of-the-art on QS operation has overlooked this association problem, and it mainly focused on QCNs with a single QS. In this paper, the request-QS association problem in QCNs is formulated as a matching game that captures the limited QCN resources, heterogeneous application-specific fidelity requirements, and scheduling of the different QS operations. To solve this game, a swap-stable request-QS association (RQSA) algorithm is proposed while considering partial QCN information availability. Extensive simulations are conducted to validate the effectiveness of the proposed RQSA algorithm. Simulation results show that the proposed RQSA algorithm achieves a near-optimal (within 5%) performance in terms of the percentage of served requests and overall achieved fidelity, while outperforming benchmark greedy solutions by over 13%. Moreover, the proposed RQSA algorithm is shown to be scalable and maintain its near-optimal performance even when the size of the QCN increases.
UR - http://www.scopus.com/inward/record.url?scp=85175980742&partnerID=8YFLogxK
U2 - 10.1109/GLOBECOM54140.2023.10437786
DO - 10.1109/GLOBECOM54140.2023.10437786
M3 - Conference contribution
AN - SCOPUS:85175980742
T3 - Proceedings - IEEE Global Communications Conference, GLOBECOM
SP - 1375
EP - 1380
BT - GLOBECOM 2023 - 2023 IEEE Global Communications Conference
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2023 IEEE Global Communications Conference, GLOBECOM 2023
Y2 - 4 December 2023 through 8 December 2023
ER -