Mapping of the neuronal networks of human cortical brain functions.

S. Momjian, M. Seghier, M. Seeck, C. M. Michel

Research output: Contribution to journalReview articlepeer-review

17 Scopus citations

Abstract

OBJECTIVE: The principles and methodology of event-related fMRI, electromagnetic source imaging and intracranial evoked potentials will be described along with some examples of the mapping of the neuronal networks of human cortical brain functions with the use of these techniques. INTRODUCTION: Functional brain mapping using PET or fMRI has provided clues on the functioning brain and notably on the functional neuroanatomy of cognitive functions. These mapping possibilities can be used to delineate in an individual patient the brain areas subserving a cerebral function that might be compromised by a surgery in a nearby location, or to target a functional neurosurgical procedure. BACKGROUND: Brain functions and notably "higher brain functions" are served by a complex network of interrelating brain regions. Deeper insights into the functioning of a neuronal network can be gained by adding dynamic, i.e. temporal, information to the functional maps. This will demonstrate the orchestration of the activation of the different brain areas constituting the network, which gives clues to the information processing and therefore to the functioning of the different modules of the network. In order to track the flow of information and the sequential activation of the different brain regions constituting the network, brain activity has to be recorded at the speed of transfer of activation from one neuronal population to the other. The temporal resolution needed to achieve this is not in the range of traditional subtractive or comparative PET or fMRI techniques. NEW DEVELOPMENTS: Novel fMRI methods that record haemodynamic signal changes after single events (event-related fMRI) are now able to determine sequential neural processing by distinguishing the relative onset-time of activity between different areas. The temporal resolution of event-related (ER) fMRI is sufficient to detect changes of mental activity within the order of several hundreds of milliseconds. This allows the exploration of a broad range of cognitive functions. Nevertheless, this technique is currently not rapid enough to observe the transient coordinations and oscillations of neuronal activities occurring across certain cortical areas during the performance of cognitive tasks. The temporal resolution needed for that is within the order of tens or a few milliseconds and is only accessible by EEG or MEG that allow true real-time measurements of the neuronal activity elicited by a stimulus. Surface recordings of multichannel EEG or MEG combined with novel electromagnetic source localisation algorithms allow a relatively precise estimation of the activated areas. A more direct localisation of electric activity is achieved by intracranial recordings in patients having implanted electrodes for diagnostic reasons. In these cases, a high temporal and spatial resolution is achieved but with a limited sampling of brain regions. CONCLUSION: Although the temporal resolution of ER fMRI is due to improve, the temporal measures provided by EEG, MEG or intracranial event-related potentials (ERPs) are absolute, which remains a unique feature of these techniques. Therefore, ER fMRI and electromagnetic source imaging are complementary. The maps obtained with ER fMRI may be refined by electromagnetic ERPs that provide further insights into the temporal coordination or orchestration between the cortical areas already detected by ER fMRI and constituting a neuronal network, and ER fMRI can be used to precisely locate the areas coarsely situated and delineated by electromagnetic source imaging. Thus, the combination of ER fMRI and electromagnetic ERPs is essential in order to produce a mapping method with a millimetre spatial resolution and a millisecond temporal resolution. Future applications should combine these techniques to localise precisely and non-invasively relevant sensory, motor and cognitive processes in order to adequately tailor any brain surgery.

Original languageBritish English
Pages (from-to)91-142
Number of pages52
JournalAdvances and technical standards in neurosurgery
Volume28
DOIs
StatePublished - 2003

Fingerprint

Dive into the research topics of 'Mapping of the neuronal networks of human cortical brain functions.'. Together they form a unique fingerprint.

Cite this