TY - JOUR
T1 - Machine Learning Techniques for Supporting Renewable Energy Generation and Integration
T2 - A Survey
AU - Perera, Kasun S.
AU - Aung, Zeyar
AU - Woon, Wei Lee
N1 - Publisher Copyright:
© Springer International Publishing Switzerland 2014.
PY - 2014
Y1 - 2014
N2 - The extraction of energy from renewable sources is rapidly growing. The current pace of technological development makes it commercially viable to harness energy from sun, wind, geothermal and many other renewable sources. Because of the negative effects on the environment and the economy, conventional energy sources like natural gas, crude oil and coal are coming under political and economic pressure. Thus, they require a better mix of energy sources with a higher percentage of renewable energy sources. Harnessing energy from renewable sources range from small scale (e.g., a single household) to large scale (e.g., power plants producing several MWs to a few GWs providing energy to an entire city). An inherent characteristic common to all renewable power plants is that power generation is dependent on environmental parameters and thus cannot be fully controlled or planned for in advance. In a power grid, it is necessary to predict the amount of power that will be generated in the future, including those from the renewable sources, as fluctuations in capacity and/or quality can have negative impacts on the physical health of the entire grid as well as the quality of life of its users. As renewable power plants continue to expand, it will also be necessary to determine their optimal sizes, locations and configurations. In addition, management of the smart grid, in which the renewable energy plants are integrated, is also a challenging problem. In this paper we provide a survey on different machine learning techniques used to address the above issues related to renewable energy generation and integration.
AB - The extraction of energy from renewable sources is rapidly growing. The current pace of technological development makes it commercially viable to harness energy from sun, wind, geothermal and many other renewable sources. Because of the negative effects on the environment and the economy, conventional energy sources like natural gas, crude oil and coal are coming under political and economic pressure. Thus, they require a better mix of energy sources with a higher percentage of renewable energy sources. Harnessing energy from renewable sources range from small scale (e.g., a single household) to large scale (e.g., power plants producing several MWs to a few GWs providing energy to an entire city). An inherent characteristic common to all renewable power plants is that power generation is dependent on environmental parameters and thus cannot be fully controlled or planned for in advance. In a power grid, it is necessary to predict the amount of power that will be generated in the future, including those from the renewable sources, as fluctuations in capacity and/or quality can have negative impacts on the physical health of the entire grid as well as the quality of life of its users. As renewable power plants continue to expand, it will also be necessary to determine their optimal sizes, locations and configurations. In addition, management of the smart grid, in which the renewable energy plants are integrated, is also a challenging problem. In this paper we provide a survey on different machine learning techniques used to address the above issues related to renewable energy generation and integration.
KW - Machine learning
KW - Renewable energy
KW - Smart grids
UR - http://www.scopus.com/inward/record.url?scp=84912559024&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-13290-7_7
DO - 10.1007/978-3-319-13290-7_7
M3 - Article
AN - SCOPUS:84912559024
SN - 0302-9743
VL - 8817
SP - 81
EP - 96
JO - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
JF - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ER -