TY - GEN
T1 - Low-cost sensors based Multi-Sensor Data Fusion techniques for RPAS Navigation and Guidance
AU - Cappello, Francesco
AU - Ramasamy, Subramanian
AU - Sabatini, Roberto
AU - Liu, Jing
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/7/7
Y1 - 2015/7/7
N2 - In order for Remotely Piloted Aircraft Systems (RPAS) to coexist seamlessly with manned aircraft in non-segregated airspace, enhanced navigational capabilities are essential to meet the Required Navigational Performance (RNP) levels in all flight phases. A Multi-Sensor Data Fusion (MSDF) framework is adopted to improve the navigation capabilities of an integrated Navigation and Guidance System (NGS) designed for small-sized RPAS. The MSDF architecture includes low-cost and low weight/volume navigation sensors suitable for various classes of RPAS. The selected sensors include Global Navigation Satellite Systems (GNSS), Micro-Electro-Mechanical System (MEMS) based Inertial Measurement Unit (IMU) and Vision Based Sensors (VBS). A loosely integrated navigation architecture is presented where an Unscented Kalman Filter (UKF) is used to combine the navigation sensor measurements. The presented UKF based VBS-INS-GNSS-ADM (U-VIGA) architecture is an evolution of previous research performed on Extended Kalman Filter (EKF) based VBS-INS-GNSS (E-VIGA) systems. An Aircraft Dynamics Model (ADM) is adopted as a virtual sensor and acts as a knowledge-based module providing additional position and attitude information, which is pre-processed by an additional/local UKF. The E-VIGA and U-VIGA performances are evaluated in a small RPAS integration scheme (i.e., AEROSONDE RPAS platform) by exploring a representative cross-section of this RPAS operational flight envelope. The position and attitude accuracy comparison shows that the E-VIGA and U-VIGA systems fulfill the relevant RNP criteria, including precision approach in CAT-II. A novel Human Machine Interface (HMI) architecture is also presented, whose design takes into consideration the coordination tasks of multiple human operators. In addition, the interface scheme incorporates the human operator as an integral part of the control loop providing a higher level of situational awareness.
AB - In order for Remotely Piloted Aircraft Systems (RPAS) to coexist seamlessly with manned aircraft in non-segregated airspace, enhanced navigational capabilities are essential to meet the Required Navigational Performance (RNP) levels in all flight phases. A Multi-Sensor Data Fusion (MSDF) framework is adopted to improve the navigation capabilities of an integrated Navigation and Guidance System (NGS) designed for small-sized RPAS. The MSDF architecture includes low-cost and low weight/volume navigation sensors suitable for various classes of RPAS. The selected sensors include Global Navigation Satellite Systems (GNSS), Micro-Electro-Mechanical System (MEMS) based Inertial Measurement Unit (IMU) and Vision Based Sensors (VBS). A loosely integrated navigation architecture is presented where an Unscented Kalman Filter (UKF) is used to combine the navigation sensor measurements. The presented UKF based VBS-INS-GNSS-ADM (U-VIGA) architecture is an evolution of previous research performed on Extended Kalman Filter (EKF) based VBS-INS-GNSS (E-VIGA) systems. An Aircraft Dynamics Model (ADM) is adopted as a virtual sensor and acts as a knowledge-based module providing additional position and attitude information, which is pre-processed by an additional/local UKF. The E-VIGA and U-VIGA performances are evaluated in a small RPAS integration scheme (i.e., AEROSONDE RPAS platform) by exploring a representative cross-section of this RPAS operational flight envelope. The position and attitude accuracy comparison shows that the E-VIGA and U-VIGA systems fulfill the relevant RNP criteria, including precision approach in CAT-II. A novel Human Machine Interface (HMI) architecture is also presented, whose design takes into consideration the coordination tasks of multiple human operators. In addition, the interface scheme incorporates the human operator as an integral part of the control loop providing a higher level of situational awareness.
KW - Aircraft dynamics model
KW - Human machine interface
KW - Low-cost sensors
KW - Multi-sensor data fusion
KW - Navigation and guidance system
KW - Remotely piloted aircraft systems
KW - Unscented kalman filter
UR - http://www.scopus.com/inward/record.url?scp=84941027448&partnerID=8YFLogxK
U2 - 10.1109/ICUAS.2015.7152354
DO - 10.1109/ICUAS.2015.7152354
M3 - Conference contribution
AN - SCOPUS:84941027448
T3 - 2015 International Conference on Unmanned Aircraft Systems, ICUAS 2015
SP - 714
EP - 722
BT - 2015 International Conference on Unmanned Aircraft Systems, ICUAS 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2015 International Conference on Unmanned Aircraft Systems, ICUAS 2015
Y2 - 9 June 2015 through 12 June 2015
ER -