Leaching of PVP from PVDF/PVP blend membranes: impacts on membrane structure and fouling in membrane bioreactors

Musthafa O. Mavukkandy, Muhammad R. Bilad, Adewale Giwa, Shadi W. Hasan, Hassan A. Arafat

Research output: Contribution to journalArticlepeer-review

70 Scopus citations

Abstract

Polyvinylidene fluoride (PVDF) membranes are widely used in membrane industry, especially for membrane bioreactors (MBRs). Many PVDF membranes contain residual polyvinyl pyrrolidone (PVP) that acts as a pore-forming additive. The presence of residual PVP in some commercial PVDF membranes is often not specified and, therefore, its impact is mostly overlooked in the literature. In this study, we investigated the effect of PVP leaching on membrane structure and its implication on membrane fouling in a lab-scale MBR. PVP leaching can occur in two ways: (1) over the course of filtration from PVDF/PVP blend membranes or (2) prior filtration operation by treating the aforementioned membrane. We prepared PVDF, PVDF/PVP blend, and PVDF/PVP blend post-treated with sodium hypochlorite (NaClO), then assessed their performance. Leaching of PVP prior to the filtration operation significantly enlarged membrane pore size and thus reduced the membrane resistance. However, this advantage was dismissed during operation in MBR because PVP leaching also induced surface hydrophobicity that promoted membrane fouling, suggesting the detrimental effect of post-treatment. For PVDF/PVP blend sample, two counter-acting phenomena occurred: (1) slow leaching of PVP which gradually enlarged the membrane pores and rendered the membrane surface more hydrophobic and (2) adsorption of foulants that formed a secondary layer atop of membrane surface, restricted the pore mouth, and rendered the surface hydrophilic. The findings are significant since the change of membrane morphology over the course of filtration, as demonstrated in this study, is often overlooked when assessing membrane performance.

Original languageBritish English
Pages (from-to)4328-4341
Number of pages14
JournalJournal of Materials Science
Volume51
Issue number9
DOIs
StatePublished - 1 May 2016

Fingerprint

Dive into the research topics of 'Leaching of PVP from PVDF/PVP blend membranes: impacts on membrane structure and fouling in membrane bioreactors'. Together they form a unique fingerprint.

Cite this