Abstract
Using first-principles calculations and semi-classical Boltzmann transport theory, the thermoelectric properties of LaBiTe3 are studied. The band gap and, hence, the thermoelectric response are found to be easily tailored by application of strain. Independent of the temperature, the figure of merit turns out to be maximal at a doping of about 1.6 × 1021 cm-3. At room temperature we obtain values of 0.4 and 0.5 for unstrained and moderately strained LaBiTe3, which increases to 1.1 and 1.3 at 800 K. A large spin splitting is observed in the conduction band at the T point. Therefore, LaBiTe3 merges characteristics that are interesting for thermoelectric as well as spintronic devices.
Original language | British English |
---|---|
Pages (from-to) | 805-808 |
Number of pages | 4 |
Journal | Physica Status Solidi - Rapid Research Letters |
Volume | 8 |
Issue number | 9 |
DOIs | |
State | Published - 2014 |
Keywords
- BiTe
- Thermoelectrics