Kinematics, dynamics and vibration models for 3RPR parallel kinematics manipulator

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Parallel link manipulators are the type of mechanisms that have closed kinematics chains. Some of their advantages over open kinematics chains (called also serial kinematics manipulators) are their high stiffness and accuracy. This paper carries out forward and inverse kinematic and dynamic analysis on a certain type of parallel kinematic mechanisms. This is needed to conduct vibration analysis on the same platform. The type of mechanism is planar 3 RPR manipulator. This entails identifying the modes of the manipulator. A simplified vibration theoretical model is derived. This derivation helps in the optimization of parallel kinematics machine design for improved/optimized dynamic performance. The implications of dynamic stiffness modeling should reflect on better noise rejection, less chatter during machining, and increasing the bandwidth of such mechanisms to admit running at higher speeds.

Original languageBritish English
Title of host publicationVibration, Acoustics and Wave Propagation
DOIs
StatePublished - 2013
EventASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013 - San Diego, CA, United States
Duration: 15 Nov 201321 Nov 2013

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume14

Conference

ConferenceASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013
Country/TerritoryUnited States
CitySan Diego, CA
Period15/11/1321/11/13

Fingerprint

Dive into the research topics of 'Kinematics, dynamics and vibration models for 3RPR parallel kinematics manipulator'. Together they form a unique fingerprint.

Cite this