Abstract
In this paper we revisit the problem of modelling analytically the kinematic interaction between a single pile and its surrounding soil under the action of seismic shear waves, by means of a Tajimi-type continuum elastodynamic model in three dimensions. The model provides the steady-state kinematic response of a cylindrical end-bearing pile embedded in a homogeneous viscoelastic soil layer, subjected to vertically propagating harmonic S-waves. Results of the model are first validated against the results of numerical simulations, and the results of an existing, approximate solution. Accordingly, we employ the model in a parametric study, where we investigate the sensitivity of the seismic response of piles to certain key problem parameters, including pile slenderness, soil-pile relative stiffness, excitation frequency and fixity conditions at the pile head. The solution yields closed-form expressions for pile deformations and for the soil resistance developing on the pile, that do not require introducing fitting coefficients.
Original language | British English |
---|---|
Article number | 107547 |
Journal | Soil Dynamics and Earthquake Engineering |
Volume | 163 |
DOIs | |
State | Published - Dec 2022 |
Keywords
- Horizontal vibration
- Piles
- Seismic waves
- Viscoelastic soil