Abstract
The attenuation of seismic waves propagating in reservoirs can be obtained accurately from the data analysis of vertical seismic profile in terms of the quality-factor Q. The common methods usually use the downgoing wavefields in vertical seismic profile data. However, the downgoing wavefields consist of more than 90% energy of the spectrum of the vertical seismic profile data, making it difficult to estimate the viscoacoustic parameters accurately. Thus, a joint viscoacoustic waveform inversion of velocity and quality-factor is proposed based on the multi-objective functions and analysis of the difference between the results inverted from the separated upgoing and downgoing wavefields. A simple separating step is accomplished by the reflectivity method to obtain the individual wavefields in vertical seismic profile data, and then a joint inversion is carried out to make full use of the information of the individual wavefields and improve the convergence of viscoacoustic full-waveform inversion. The sensitivity analysis of the different wavefields to the velocity and quality-factor shows that the upgoing and downgoing wavefields contribute differently to the viscoacoustic parameters. A numerical example validates our method can improve the accuracy of viscoacoustic parameters compared with the direct inversion using full wavefield and the separate inversion using upgoing or downgoing wavefield. The application on real field data indicates our method can recover a reliable viscoacoustic model, which helps reservoir appraisal.
Original language | British English |
---|---|
Pages (from-to) | 125-139 |
Number of pages | 15 |
Journal | Geophysical Prospecting |
Volume | 71 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2023 |
Keywords
- attenuation
- vertical seismic profile
- waveform inversion