Investigation of horizontal ground electrode's effective length under impulse current

Omar Kherif, Sofiane Chiheb, Madjid Teguar, Abdelouahab Mekhaldi, Noureddine Harid

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

This paper discusses the impulse analysis of horizontal ground electrode buried in uniform and two-layer soils, describing applications of a recently developed model based on transmission line approach for the analysis of high frequency and transient behavior of grounding systems. Simulations were carried out to compute the ground electrode' potential and the impulse impedance. A practical method to estimate the effective length of horizontal ground electrodes is presented. The results have been successfully compared with those computed using formulas reported in the literature and only developed for uniform soils. The proposed method is intended for estimation of the effective length of horizontal electrodes buried in soils having a two-layer stratification, which has not yet been considered so far. Based on this method, parametric analysis carried out has shown that the parameters influencing the effective length are mainly the soil resistivity and the rise time of the injected current for uniform soils or associated with the upper layer depth and the refection factor for two-layer soils. Using a genetic algorithm, mathematical expressions for the effective length of horizontal ground electrodes are proposed in terms of these parameters.

Original languageBritish English
Article number8443148
Pages (from-to)1515-1523
Number of pages9
JournalIEEE Transactions on Electromagnetic Compatibility
Volume61
Issue number5
DOIs
StatePublished - Oct 2019

Keywords

  • Effective length
  • electrodes
  • grounding
  • lightning transients
  • transient analysis
  • two-layer soil

Fingerprint

Dive into the research topics of 'Investigation of horizontal ground electrode's effective length under impulse current'. Together they form a unique fingerprint.

Cite this