Investigation into the control methods to reduce the DC-link capacitor ripple current in a back-to-back converter

Zian Qin, Huai Wang, Frede Blaabjerg, Poh Chiang Loh

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    27 Scopus citations

    Abstract

    Three-phase back-to-back converters have a wide range of applications (e.g. wind turbines) in which the reliability and cost-effectiveness are of great concern. Among other components and interconnections, DC-link capacitors are one of the weak links influenced by environmental stresses (e.g. ambient temperature, humidity, etc.) and operating stresses (e.g. voltage, ripple current). This paper serves to investigate the ways of reducing ripple current stresses of DC-link capacitors in back-to-back converters. The outcome could benefit to achieve either an extended lifetime for a designed DC-link or a reduced DC-link size for fulfilling a specified lifetime target. The proposed control strategies have been demonstrated on a study case of a 1.5 kW converter prototype. The experimental verifications are in well agreement with the theoretical analyses.

    Original languageBritish English
    Title of host publication2014 IEEE Energy Conversion Congress and Exposition, ECCE 2014
    PublisherInstitute of Electrical and Electronics Engineers Inc.
    Pages203-210
    Number of pages8
    ISBN (Electronic)9781479956982
    DOIs
    StatePublished - 11 Nov 2014

    Publication series

    Name2014 IEEE Energy Conversion Congress and Exposition, ECCE 2014

    Fingerprint

    Dive into the research topics of 'Investigation into the control methods to reduce the DC-link capacitor ripple current in a back-to-back converter'. Together they form a unique fingerprint.

    Cite this