TY - GEN
T1 - Interline Photovoltaic (I-PV) power system - A novel concept of power flow control and management
AU - Khadkikar, Vinod
AU - Kirtley, James L.
PY - 2011
Y1 - 2011
N2 - This paper presents a new system configuration for a large-scale Photovoltaic (PV) power system with multi-line transmission/distribution networks. A PV power plant is reconfigured in a way that two adjacent power system networks/ feeders can be interconnected. The inverter modules in a PV power plant are configured such that the system is represented as a back to back inverter connected multi-line system, called as Interline-PV (I-PV) system. The proposed I-PV system then can be controlled adequately allowing the PV solar plant to function as a flexible AC transmission system (FACTS) device, such as, interline power flow controller (IPFC). With the proposed I-PV system both active and reactive power flow control and energy management in a multi-line system can be achieved. The I-PV system can have various applications, for example, to regulate the feeder voltages, load reactive power support, real power transfer from over power generation line to under loaded line, improve the overall system performance against dynamic disturbances (such as, power system damping) and so on. A simulation study is carried out to illustrate one of the capabilities and effectiveness of the proposed I-PV system.
AB - This paper presents a new system configuration for a large-scale Photovoltaic (PV) power system with multi-line transmission/distribution networks. A PV power plant is reconfigured in a way that two adjacent power system networks/ feeders can be interconnected. The inverter modules in a PV power plant are configured such that the system is represented as a back to back inverter connected multi-line system, called as Interline-PV (I-PV) system. The proposed I-PV system then can be controlled adequately allowing the PV solar plant to function as a flexible AC transmission system (FACTS) device, such as, interline power flow controller (IPFC). With the proposed I-PV system both active and reactive power flow control and energy management in a multi-line system can be achieved. The I-PV system can have various applications, for example, to regulate the feeder voltages, load reactive power support, real power transfer from over power generation line to under loaded line, improve the overall system performance against dynamic disturbances (such as, power system damping) and so on. A simulation study is carried out to illustrate one of the capabilities and effectiveness of the proposed I-PV system.
KW - active power control
KW - interline power system
KW - Photovoltaic power generation
KW - power management
KW - reactive power control
KW - voltage regulation
UR - http://www.scopus.com/inward/record.url?scp=82855172415&partnerID=8YFLogxK
U2 - 10.1109/PES.2011.6039459
DO - 10.1109/PES.2011.6039459
M3 - Conference contribution
AN - SCOPUS:82855172415
SN - 9781457710018
T3 - IEEE Power and Energy Society General Meeting
BT - 2011 IEEE PES General Meeting
T2 - 2011 IEEE PES General Meeting: The Electrification of Transportation and the Grid of the Future
Y2 - 24 July 2011 through 28 July 2011
ER -