TY - JOUR
T1 - Integrating capture and methanation of CO2 using physical mixtures of Na-Al2O3 and mono-/ bimetallic (Ru)Ni/Pr-CeO2
AU - Tsiotsias, Anastasios I.
AU - Charisiou, Nikolaos D.
AU - Hussien, Aseel G.S.
AU - Sebastian, Victor
AU - Polychronopoulou, Kyriaki
AU - Goula, Maria A.
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/7/1
Y1 - 2024/7/1
N2 - The integrated capture and methanation of CO2 is hereby realized via the use of physical mixtures of a 12 % Na2O/Al2O3 adsorbent and either a monometallic (10 % Ni/Pr-CeO2) or a bimetallic (1 % Ru, 10 % Ni/Pr–CeO2) catalyst. The effect of the weight ratio between the catalyst and the adsorbent components is studied and it is found to exert a great influence in the reaction kinetics and the CH4 production capacity, with the 1:3 catalyst: adsorbent weight ratio (2.5 wt% Ni for both physically mixed materials and 0.25 wt% Ru for the bimetallic material) providing the highest CH4 yield. It is further shown that the materials offer high activity, stability and CH4 selectivity at just 300 °C, even under the co–presence of O2 and H2O during CO2 adsorption, a fact attributable to the preservation of the Ni-CeO2 contact, which is known to afford a high reducibility to the catalytically active Ni phase. The presence of Ru can further enhance the material reducibility and activity under low operation temperatures and catalyst: adsorbent weight ratios, while also mitigating the negative effect of the O2 and H2O presence in the adsorption feed. A CH4 yield of 0.24 mmol/g after 10 consecutive cycles of CO2 adsorption (under O2 and H2O containing gas) and methanation is achieved for the monometallic Ni-based physically mixed material, compared to 0.29 mmol/g in the case of the Ru–Ni bimetallic physically mixed material.
AB - The integrated capture and methanation of CO2 is hereby realized via the use of physical mixtures of a 12 % Na2O/Al2O3 adsorbent and either a monometallic (10 % Ni/Pr-CeO2) or a bimetallic (1 % Ru, 10 % Ni/Pr–CeO2) catalyst. The effect of the weight ratio between the catalyst and the adsorbent components is studied and it is found to exert a great influence in the reaction kinetics and the CH4 production capacity, with the 1:3 catalyst: adsorbent weight ratio (2.5 wt% Ni for both physically mixed materials and 0.25 wt% Ru for the bimetallic material) providing the highest CH4 yield. It is further shown that the materials offer high activity, stability and CH4 selectivity at just 300 °C, even under the co–presence of O2 and H2O during CO2 adsorption, a fact attributable to the preservation of the Ni-CeO2 contact, which is known to afford a high reducibility to the catalytically active Ni phase. The presence of Ru can further enhance the material reducibility and activity under low operation temperatures and catalyst: adsorbent weight ratios, while also mitigating the negative effect of the O2 and H2O presence in the adsorption feed. A CH4 yield of 0.24 mmol/g after 10 consecutive cycles of CO2 adsorption (under O2 and H2O containing gas) and methanation is achieved for the monometallic Ni-based physically mixed material, compared to 0.29 mmol/g in the case of the Ru–Ni bimetallic physically mixed material.
KW - Bimetallic catalysts
KW - Effect of O and HO
KW - Integrated CO capture and methanation
KW - Na-AlO
KW - Ni–CeO
KW - Physical mixtures
UR - http://www.scopus.com/inward/record.url?scp=85192677824&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2024.151962
DO - 10.1016/j.cej.2024.151962
M3 - Article
AN - SCOPUS:85192677824
SN - 1385-8947
VL - 491
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 151962
ER -