TY - JOUR
T1 - Induction of apoptosis in human leukemia cells by the tyrosine kinase inhibitor adaphostin proceeds through a RAF-1/MEK/ERK- and AKT-dependent process
AU - Yu, Chunrong
AU - Rahmani, Mohamed
AU - Almenara, Jorge
AU - Sausville, Edward A.
AU - Dent, Paul
AU - Grant, Steven
N1 - Funding Information:
This work was supported by awards CA63753 and CA 93738 from the NIH, award 6045-03 from the Leukemia and Lymphoma Society of America, and award DAMD-17-03-1-0209 from the Department of Defense.
PY - 2004/2/19
Y1 - 2004/2/19
N2 - Effects of the tyrphostin tyrosine kinase inhibitor adaphostin (NSC 680410) have been examined in human leukemia cells (Jurkat, U937) in relation to mitochondrial events, apoptosis, and perturbations in signaling and cell cycle regulatory events. Exposure of cells to adaphostin concentrations ≥0.75 μM for intervals ge;6 h resulted in a pronounced release of cytochrome c and AIF, activation of caspase-9, -8, and -3, and apoptosis. These events were accompanied by the caspase-independent downregulation of Raf-1, inactivation of MEK1/2, ERK, Akt, p70S6K, dephosphorylation of GSK-3, and activation of c-Jun-N-terminal kinase (JNK) and p38 MAPK. Adaphostin also induced cleavage and dephosphorylation of pRb on CDK2- and CDK4-specific sites, as well as the caspase-dependent downregulation of cyclin D1. Inducible expression of a constitutively active MEK1 construct markedly diminished adaphostin-induced cytochrome c and AIF release, JNK activation, and apoptosis in Jurkat cells. Ectopic expression of Raf-1 or constitutively activated (myristolated) Akt also significantly attenuated adaphostin-induced apoptosis, but protection was less than that conferred by enforced activation of MEK. Lastly, antioxidants (e.g., L-N-acetylcysteine; L-NAC) opposed adaphostin-mediated mitochondrial dysfunction, Raf-1/ MEK/ERK downregulation, JNK activation, and apoptosis. However, in contrast to L-NAC, enforced activation of MEK failed to block adaphostin-mediated ROS generation. Together, these findings demonstrate that the tyrphostin adaphostin induces multiple perturbations in signal transduction pathways in human leukemia cells, particularly inactivation of the cytoprotective Raf-1/ MEK/ERK and Akt cascades, that culminate in mitochondrial injury, caspase activation, and apoptosis. They also suggest that adaphostin-related oxidative stress acts upstream of perturbations in these signaling pathways to trigger the cell death process.
AB - Effects of the tyrphostin tyrosine kinase inhibitor adaphostin (NSC 680410) have been examined in human leukemia cells (Jurkat, U937) in relation to mitochondrial events, apoptosis, and perturbations in signaling and cell cycle regulatory events. Exposure of cells to adaphostin concentrations ≥0.75 μM for intervals ge;6 h resulted in a pronounced release of cytochrome c and AIF, activation of caspase-9, -8, and -3, and apoptosis. These events were accompanied by the caspase-independent downregulation of Raf-1, inactivation of MEK1/2, ERK, Akt, p70S6K, dephosphorylation of GSK-3, and activation of c-Jun-N-terminal kinase (JNK) and p38 MAPK. Adaphostin also induced cleavage and dephosphorylation of pRb on CDK2- and CDK4-specific sites, as well as the caspase-dependent downregulation of cyclin D1. Inducible expression of a constitutively active MEK1 construct markedly diminished adaphostin-induced cytochrome c and AIF release, JNK activation, and apoptosis in Jurkat cells. Ectopic expression of Raf-1 or constitutively activated (myristolated) Akt also significantly attenuated adaphostin-induced apoptosis, but protection was less than that conferred by enforced activation of MEK. Lastly, antioxidants (e.g., L-N-acetylcysteine; L-NAC) opposed adaphostin-mediated mitochondrial dysfunction, Raf-1/ MEK/ERK downregulation, JNK activation, and apoptosis. However, in contrast to L-NAC, enforced activation of MEK failed to block adaphostin-mediated ROS generation. Together, these findings demonstrate that the tyrphostin adaphostin induces multiple perturbations in signal transduction pathways in human leukemia cells, particularly inactivation of the cytoprotective Raf-1/ MEK/ERK and Akt cascades, that culminate in mitochondrial injury, caspase activation, and apoptosis. They also suggest that adaphostin-related oxidative stress acts upstream of perturbations in these signaling pathways to trigger the cell death process.
KW - Adaphostin
KW - Akt
KW - Apoptosis
KW - ERK
KW - Leukemia
KW - ROS
UR - http://www.scopus.com/inward/record.url?scp=1442308361&partnerID=8YFLogxK
U2 - 10.1038/sj.onc.1207248
DO - 10.1038/sj.onc.1207248
M3 - Article
C2 - 14647418
AN - SCOPUS:1442308361
SN - 0950-9232
VL - 23
SP - 1364
EP - 1376
JO - Oncogene
JF - Oncogene
IS - 7
ER -