Impact of pressure and temperature on CO2-brine-mica contact angles and CO2-brine interfacial tension: Implications for carbon geo-sequestration

Muhammad Arif, Ahmed Z. Al-Yaseri, Ahmed Barifcani, Maxim Lebedev, Stefan Iglauer

    Research output: Contribution to journalArticlepeer-review

    244 Scopus citations

    Abstract

    Precise characterization of wettability of CO2-brine-rock system and CO2-brine interfacial tension at reservoir conditions is essential as they influence capillary sealing efficiency of caprocks, which in turn, impacts the structural and residual trapping during CO2 geo-sequestration. In this context, we have experimentally measured advancing and receding contact angles for brine-CO2-mica system (surface roughness ~12nm) at different pressures (0.1MPa, 5MPa, 7MPa, 10MPa, 15MPa, 20MPa), temperatures (308K, 323K, and 343K), and salinities (0wt%, 5wt%, 10wt%, 20wt% and 30wt% NaCl). For the same experimental matrix, CO2-brine interfacial tensions have also been measured using the pendant drop technique. The results indicate that both advancing and receding contact angles increase with pressure and salinity, but decrease with temperature. On the contrary, CO2-brine interfacial tension decrease with pressure and increase with temperature. At 20MPa and 308K, the advancing angle is measured to be ~110°, indicating CO2-wetting. The results have been compared with various published literature data and probable factors responsible for deviations have been highlighted. Finally we demonstrate the implications of measured data by evaluating CO2 storage heights under various operating conditions. We conclude that for a given storage depth, reservoirs with lower pressures and high temperatures can store larger volumes and thus exhibit better sealing efficiency.

    Original languageBritish English
    Pages (from-to)208-215
    Number of pages8
    JournalJournal of Colloid and Interface Science
    Volume462
    DOIs
    StatePublished - 15 Jan 2016

    Keywords

    • Caprock
    • Carbon dioxide
    • Carbon geo sequestration
    • Contact angle
    • Interfacial tension
    • Pressure
    • Salinity
    • Structural trapping
    • Temperature

    Fingerprint

    Dive into the research topics of 'Impact of pressure and temperature on CO2-brine-mica contact angles and CO2-brine interfacial tension: Implications for carbon geo-sequestration'. Together they form a unique fingerprint.

    Cite this