Abstract
A novel composite film was designed for use as a highly selective mediator-free amperometric biosensor, and a method was created for accomplishing direct electrochemistry of myoglobin on a multi-walled carbon nanotube and tyramine-modified composite decorated with Au nanoparticles on a glassy carbon electrode. The ultraviolet-visible and electrochemical impedance spectroscopy results showed that myoglobin retained its native conformation in the interaction with Au-PTy-f-MWCNT. The surface coverage of Mb-heme-Fe (II)/(III) immobilized on Au-PTy-f-MWCNT and the heterogeneous electron-transfer rate constant were 2.12 × 10 â '9 mol cm â '2 and 4.86 s â '1, respectively, indicating a higher loading capacity of the nanocomposite for direct electron transfer of Mb onto the electrode surface. The proposed Mb/Au-PTy-f-MWCNT biofilm exhibited excellent electrocatalytic behavior toward the reduction of H2O2 and the oxidation of nitrite with linear ranges of 2 to 5000 Î 1/4M and 1 to 8000 Î 1/4M and lower detection limits of 0.01 Î 1/4M and 0.002 Î 1/4M, respectively. An apparent Michaelis-Menten constant of 0.12 mM indicated that the Mb immobilized on the Au-PTy-f-MWCNT film retained its native activity. This biosensor can be successfully applied to detect H2O2 and nitrite in disinfectant cream, eye drops, pickle juice, and milk samples.
Original language | British English |
---|---|
Article number | 18390 |
Journal | Scientific Reports |
Volume | 5 |
DOIs | |
State | Published - 17 Dec 2015 |