Identification schemes for unmanned excavator arm parameters

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Parameter identification is a key requirement in the field of automated control of unmanned excavators (UEs). Furthermore, the UE operates in unstructured, often hazardous environments, and requires a robust parameter identification scheme for field applications. This paper presents the results of a research study on parameter identification for UE. Three identification methods, the Newton-Raphson method, the generalized Newton method, and the least squares method are used and compared for prediction accuracy, robustness to noise and computational speed. The techniques are used to identify the link parameters (mass, inertia, and length) and friction coefficients of the full-scale UE. Using experimental data from a full-scale field UE, the values of link parameters and the friction coefficient are identified. Some of the identified parameters are compared with measured physical values. Furthermore, the joint torques and positions computed by the proposed model using the identified parameters are validated against measured data. The comparison shows that both the Newton-Raphson method and the generalized Newton method are better in terms of prediction accuracy. The Newton-Raphson method is computationally efficient and has potential for real time application, but the generalized Newton method is slightly more robust to measurement noise. The experimental data were obtained in collaboration with QinetiQ Ltd.

Original languageBritish English
Pages (from-to)185-192
Number of pages8
JournalInternational Journal of Automation and Computing
Volume5
Issue number2
DOIs
StatePublished - Apr 2008

Keywords

  • Complex dynamic systems
  • Full-scale validation
  • Generalized Newton method
  • Least squares method
  • Newton-Raphson method
  • Parameters identification

Fingerprint

Dive into the research topics of 'Identification schemes for unmanned excavator arm parameters'. Together they form a unique fingerprint.

Cite this