Hyper-parameter Tuning for Progressive Learning and its Application to Network Cyber Security

Rupesh Raj Karn, Matthew Ziegler, Jinwook Jung, Ibrahim Abe M. Elfadel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

The long-term deployment of data-driven AI technology using artificial neural networks (ANNs) should be scalable and maintainable when new data becomes available. To insure smooth adaptation, the learning must be cumulative so that the network consumes new data without compromising its inference performance based on past data. Such incremental accumulation of learning experience is known as progressive learning. In this paper, we address the open problem of tuning the hyperparameters of neural networks during progressive learning. A hyper-parameter optimization framework is proposed that selects the best hyper-parameter values on a task-by-task basis. The neural network model adapts to each progressive learning task by adjusting the hyper-parameters under which the neural architecture is incrementally grown. Several hyper-parameter search strategies are explored and compared in support of progressive learning. In contrast to the predominant practice of using imaging datasets in machine learning, we have used cybersecurity datasets to illustrate the advantages of the proposed hyper-parameter tuning algorithms.

Original languageBritish English
Title of host publicationIEEE International Symposium on Circuits and Systems, ISCAS 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1220-1224
Number of pages5
ISBN (Electronic)9781665484855
DOIs
StatePublished - 2022
Event2022 IEEE International Symposium on Circuits and Systems, ISCAS 2022 - Austin, United States
Duration: 27 May 20221 Jun 2022

Publication series

NameProceedings - IEEE International Symposium on Circuits and Systems
Volume2022-May
ISSN (Print)0271-4310

Conference

Conference2022 IEEE International Symposium on Circuits and Systems, ISCAS 2022
Country/TerritoryUnited States
CityAustin
Period27/05/221/06/22

Fingerprint

Dive into the research topics of 'Hyper-parameter Tuning for Progressive Learning and its Application to Network Cyber Security'. Together they form a unique fingerprint.

Cite this