Hierarchical hollow metal nanostructure arrays for selective CO2 conversion

James W. Maina, Jennifer M. Pringle, Joselito M. Razal, Stella Aslanoglou, Roey Elnathan, Nicolas H. Voelcker, Ludovic F. Dumée

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Metal hollow nanostructures have a wide range of potential applications in energy storage and conversion, owing to their low density, high surface to volume ratio, and high contact surface area. However, the fabrication of such nanostructures remains challenging to date, with most fabrication routes only limited to specific materials. Herein, a universal templating strategy for fabricating hierarchical and aligned arrays of hollow metal nanostructures, from a variety of metallic materials including Cu, Ag, Ni and Pd, is reported. By using copper as a representative material, it is demonstrated that these nanostructures exhibit an enhanced electrocatalytic activity for CO2 conversion, with the Cu nanostructures producing more than 205% and 183% higher yield for CO and H2 respectively, compared to non-nanostructured plain copper films at an applied potential of -2.4 V vs. Ag/AgCl. This work opens up a new route for fabricating hollow nanostructures with tailored metal compositions for energy storage and conversion applications.

Original languageBritish English
Pages (from-to)2456-2463
Number of pages8
JournalMaterials Advances
Volume3
Issue number5
DOIs
StatePublished - 28 Jan 2022

Fingerprint

Dive into the research topics of 'Hierarchical hollow metal nanostructure arrays for selective CO2 conversion'. Together they form a unique fingerprint.

Cite this