Graph CNN for Moving Object Detection in Complex Environments from Unseen Videos

Jhony H. Giraldo, Sajid Javed, Naoufel Werghi, Thierry Bouwmans

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

20 Scopus citations

Abstract

Moving Object Detection (MOD) is a fundamental step for many computer vision applications. MOD becomes very challenging when a video sequence captured from a static or moving camera suffers from the challenges: camouflage, shadow, dynamic backgrounds, and lighting variations, to name a few. Deep learning methods have been successfully applied to address MOD with competitive performance. However, in order to handle the overfitting problem, deep learning methods require a large amount of labeled data which is a laborious task as exhaustive annotations are always not available. Moreover, some MOD deep learning methods show performance degradation in the presence of unseen video sequences because the testing and training splits of the same sequences are involved during the network learning process. In this work, we pose the problem of MOD as a node classification problem using Graph Convolutional Neural Networks (GCNNs). Our algorithm, dubbed as GraphMOD-Net, encompasses instance segmentation, background initialization, feature extraction, and graph construction. GraphMOD-Net is tested on unseen videos and outperforms state-of-the-art methods in unsupervised, semi-supervised, and supervised learning in several challenges of the Change Detection 2014 (CDNet2014) and UCSD background subtraction datasets.

Original languageBritish English
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages225-233
Number of pages9
ISBN (Electronic)9781665401913
DOIs
StatePublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021 - Virtual, Online, Canada
Duration: 11 Oct 202117 Oct 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2021-October
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021
Country/TerritoryCanada
CityVirtual, Online
Period11/10/2117/10/21

Fingerprint

Dive into the research topics of 'Graph CNN for Moving Object Detection in Complex Environments from Unseen Videos'. Together they form a unique fingerprint.

Cite this