Fundamental considerations for designing compact solar thermal power and ejector cooling systems in hot climates

Tie Jun Zhang, Saleh Mohamed, Guanqiu Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

A combined thermal power and ejector refrigeration cooling cycle is proposed in this paper to harness low-grade solar energy. It utilizes abundant and low-cost hydrocarbon as the working fluid. Hydrocarbon has been identified as a promising alternative to existing high global-warming-potential refrigerants (i.e., HFC refrigerant R134a) in next-generation refrigeration systems. Several typical alternative refrigerants are evaluated by considering their fundamental thermophysical properties: Absolute pressure level, volumetric cooling capacity, surface tension, saturated liquid/vapor density ratio and kinematic viscosity. Comparing with R1234yf, R1234ze and R744 (CO2), hydrocarbon refrigerants, such as R290 (propane) and R601 (pentane), do have inherent advantages for either cooling or power generation purposes in hot climates: lower flow resistance and better heat transfer at higher temperature. Fundamental phase stability and transition issues have been considered in designing pentane vapor ejectors for combined power and cooling cycles operating at high ambient temperature. Thermodynamic analysis has indicated that the proposed solar thermal system can provide an effective way to sustainable energy production in hot and dry climates.

Original languageBritish English
Title of host publicationHeat Transfer and Thermal Engineering
DOIs
StatePublished - 2013
EventASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013 - San Diego, CA, United States
Duration: 15 Nov 201321 Nov 2013

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume8 C

Conference

ConferenceASME 2013 International Mechanical Engineering Congress and Exposition, IMECE 2013
Country/TerritoryUnited States
CitySan Diego, CA
Period15/11/1321/11/13

Fingerprint

Dive into the research topics of 'Fundamental considerations for designing compact solar thermal power and ejector cooling systems in hot climates'. Together they form a unique fingerprint.

Cite this