TY - GEN
T1 - Functional reverse engineering on Sat-attack resilient logic locking
AU - Alrahis, Lilas
AU - Yasin, Muhammad
AU - Saleh, Hani
AU - Mohammad, Baker
AU - Al-Qutayri, Mahmoud
N1 - Publisher Copyright:
© 2019 IEEE
PY - 2019
Y1 - 2019
N2 - Logic locking is a solution that mitigates hardware security threats, such as Trojan insertion, piracy and counterfeiting. Research in this area has led to, in an iterative fashion, a series of logic locking defenses as well as attacks that circumvent these defenses by extracting the logic locking key. The most powerful attacks rely on a full access to a working chip/oracle that can be used to produce the input-output pairs utilized in recovering the secret key. A recently proposed technique Stripped Functionality Logic Locking (SFLL) provides resilience to all known attacks on combinational logic locking. In this paper, we propose a functional reverse engineering attack on SFLL: an attack that can detect the protection logic of SFLL which results in obtaining the original unlocked design with a high success rate. The restore and perturb blocks utilized by SFLL were detected with average coverage percentages of 93.95% and 85.42% respectively, proving that our attack is capable of breaking the state of the art logic locking technique.
AB - Logic locking is a solution that mitigates hardware security threats, such as Trojan insertion, piracy and counterfeiting. Research in this area has led to, in an iterative fashion, a series of logic locking defenses as well as attacks that circumvent these defenses by extracting the logic locking key. The most powerful attacks rely on a full access to a working chip/oracle that can be used to produce the input-output pairs utilized in recovering the secret key. A recently proposed technique Stripped Functionality Logic Locking (SFLL) provides resilience to all known attacks on combinational logic locking. In this paper, we propose a functional reverse engineering attack on SFLL: an attack that can detect the protection logic of SFLL which results in obtaining the original unlocked design with a high success rate. The restore and perturb blocks utilized by SFLL were detected with average coverage percentages of 93.95% and 85.42% respectively, proving that our attack is capable of breaking the state of the art logic locking technique.
UR - http://www.scopus.com/inward/record.url?scp=85066795644&partnerID=8YFLogxK
U2 - 10.1109/ISCAS.2019.8702704
DO - 10.1109/ISCAS.2019.8702704
M3 - Conference contribution
AN - SCOPUS:85066795644
T3 - Proceedings - IEEE International Symposium on Circuits and Systems
BT - 2019 IEEE International Symposium on Circuits and Systems, ISCAS 2019 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2019 IEEE International Symposium on Circuits and Systems, ISCAS 2019
Y2 - 26 May 2019 through 29 May 2019
ER -