Abstract
The main purpose of salinity gradient solar ponds (SGSPs) is to store the maximum possible solar thermal energy. A well-established salinity and temperature gradients are the main points to achieved optimum storage efficiency. In this work, a high-fidelity model is developed using computational fluid dynamics (CFD) to simulate the SGSP behavior under hot climate regions. The model is able to simulate the double convective effect by solving Navier-Stokes and energy equations, simultaneously. Brines with different salinities (i.e. 10%,15, and 25%) are used to investigate their role on the developed salinity/temperature gradients. Simulation results show the successful establishment of the three zones (i.e. upper convective, non-convective, and lower convective) with relatively stable salinity and temperature gradients. However, injecting the lower convective zone (or storage zone) with 10% saline brine results in preserving the highest storage temperature of around 79.2°C after flow time of six hours.
Original language | British English |
---|---|
Pages (from-to) | 911-917 |
Number of pages | 7 |
Journal | Energy Procedia |
Volume | 158 |
DOIs | |
State | Published - 2019 |
Event | 10th International Conference on Applied Energy, ICAE 2018 - Hong Kong, China Duration: 22 Aug 2018 → 25 Aug 2018 |
Keywords
- Energy storage
- Salinity gradient
- SGSP
- Solar energy
- Solar pond
- Solar thermal
- Thermal reserviour