Farnesyltransferase inhibitors interact synergistically with the Chk1 inhibitor UCN-01 to induce apoptosis in human leukemia cells through interruption of both Akt and MEK/ERK pathways and activation of SEK1/JNK

Yun Dai, Mohamed Rahmani, Xin Yan Pei, Payal Khanna, Song Iy Han, Clint Mitchell, Paul Dent, Steven Grant

Research output: Contribution to journalArticlepeer-review

59 Scopus citations

Abstract

Interactions between the Chk1 inhibitor UCN-01 and the farnesyltransferase inhibitor L744832 were examined in human leukemia cells. Combined exposure of U937 cells to subtoxic concentrations of UCN-01 and L744832 resulted in a dramatic increase in mitochondrial dysfunction, apoptosis, and loss of clonogenicity. Similar interactions were noted in other leukemia cells (HL-60, Raji, Jurkat) and primary acute myeloid leukemia (AML) blasts. Coadministration of L744832 blocked UCN-01-mediated phosphorylation of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK), leading to down-regulation of phospho-cyclic adenosine monophosphate responsive element-binding protein (phospho-CREB) and -p90RSK and activation of p34cdc2 and stress-activated protein kinase/ERK kinase/c-Jun N-terminal kinase (SEK/JNK). Combined treatment also resulted in pronounced reductions in levels of phospho-Akt, -glycogen synthase kinase-3 (-GSK-3), -p70S6K, -mammalian target of rapamycin (-mTOR), -forkhead transcription factor (-FKHR), -caspase-9, and -Bad. Ectopic expression of Bcl-2 or Bcl-xL but not dominant-negative caspase-8 blocked UCN-01/L744832-mediated mitochondrial dysfunction and apoptosis but did not prevent activation of p34cdc2 and JNK or inactivation of MEK/ERK and Akt. Enforced expression of myristoylated Akt but not constitutively active MEK significantly attenuated UCH-01/L744832-induced apoptosis. However, dual transfection with Akt and MEK resulted in further protection from UCN-01/L744832-mediated lethality. Finally, down-regulation of JNK1 by siRNA significantly reduced the lethality of the UCN-01/L744832 regimen. Together, these findings suggest that farnesyltransferase inhibitors interrupt the cytoprotective Akt and MAPK pathways while reciprocally activating SAPK/JNK in leukemia cells exposed to UCN-01 and, in so doing, dramatically increase mitochondria-dependent apoptosis.

Original languageBritish English
Pages (from-to)1706-1716
Number of pages11
JournalBlood
Volume105
Issue number4
DOIs
StatePublished - 15 Feb 2005

Fingerprint

Dive into the research topics of 'Farnesyltransferase inhibitors interact synergistically with the Chk1 inhibitor UCN-01 to induce apoptosis in human leukemia cells through interruption of both Akt and MEK/ERK pathways and activation of SEK1/JNK'. Together they form a unique fingerprint.

Cite this