Abstract
This work discusses the fabrication and characterization of Pt-Co electrocatalysts for polymer electrolyte membrane fuel cells (PEMFC) and electrocatalysis of the oxygen reduction reaction. Two sets of carbon supported catalysts with Pt:Co in the atomic ratio of 0.25:0.75 and 0.75:0.25 were prepared using a high-energy ball-milling technique. One of the Pt-Co electrocatalysts was subjected to lixiviation to examine the change in surface area. Microstructural characterization of the electrocatalysts was done using scanning electron microscopy, transmission electron microscopy, x-ray diffractometry, and x-ray photoelectron spectroscopy. Electrochemical characterization of the electrocatalysts was done in acidic and alkaline media using cyclic voltammetry and potentio-dynamic polarization techniques. These tests were performed at room and higher temperature (50°C). Performances of the electrocatalysts were also compared with the commercial E-TEK Pt:Co alloy electrocatalysts of the compositions 10% Pt-Co alloy (1:1 a/o) and 40% Pt-Co alloy (1:1 a/o) on Vulcan XC-72.
Original language | British English |
---|---|
Pages (from-to) | 171-178 |
Number of pages | 8 |
Journal | Journal of Fuel Cell Science and Technology |
Volume | 2 |
Issue number | 3 |
DOIs | |
State | Published - Aug 2005 |
Keywords
- Ball milling
- Lixiviation
- Oxygen reduction reaction
- Polymer electrolyte membrane fuel cells