Abstract
We experimentally demonstrate wavelength-independent couplers based on an asymmetric Mach-Zehnder interferometer on a monolithic silicon-photonics platform in a state-of-the-art CMOS foundry. The devices are also designed to exhibit fabrication tolerant performance for arbitrary splitting ratios. We have developed a semi-analytical model to optimize the device response and the reliability of the model is benchmarked against 3D-FDTD simulations. Experimental results are consistent with the simulation results obtained by the model and show uniform performance across different wafer sites with a standard deviation for the splitting ratio of only 0.6% at 1310 nm wavelength. The maximum spectral deviation of the splitting ratio (3-dB splitter) is measured to be 1.2% over a wavelength range of at least 80 nm and the insertion loss ranges from 0.08 to 0.38 dB. The wavelength-independent coupler has a compact footprint of 60 × 40 μm2.
Original language | British English |
---|---|
Pages (from-to) | 33780-33791 |
Number of pages | 12 |
Journal | Optics Express |
Volume | 30 |
Issue number | 19 |
DOIs | |
State | Published - 12 Sep 2022 |